Affiliations 

  • 1 State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
  • 2 Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
  • 3 Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia
Environ Sci Ecotechnol, 2022 Jan;9:100145.
PMID: 36157853 DOI: 10.1016/j.ese.2022.100145

Abstract

The existence of continually increasing concentrations of antibiotics in the environment is a serious potential hazard due to their toxicity and persistence. Unfortunately, conventional treatment techniques, such as those utilized in wastewater treatment plants, are not efficient for the treatment of wastewater containing antibiotic. Recently, algae-based technologies have been found to be a sustainable and promising technique for antibiotic removal. Therefore, this review aims to provide a critical summary of algae-based technologies and their important role in antibiotic wastewater treatment. Algal removal mechanisms including bioadsorption, bioaccumulation, and biodegradation are discussed in detail, with using algae-bacteria consortia for antibiotic treatment, integration of algae with other microorganisms (fungi and multiple algal species), hybrid algae-based treatment and constructed wetlands, and the factors affecting algal antibiotic degradation comprehensively described and assessed. In addition, the use of algae as a precursor for the production of biochar is highlighted, along with the modification of biochar with other materials to improve its antibiotic removal capacity and hybrid algae-based treatment with advanced oxidation processes. Furthermore, recent novel approaches for enhancing antibiotic removal, such as the use of genetic engineering to enhance the antibiotic degradation capacity of algae and the integration of algal antibiotic removal with bioelectrochemical systems are discussed. Finally, some based on the critical review, key future research perspectives are proposed. Overall, this review systematically presents the current progress in algae-mediated antibiotic removal technologies, providing some novel insights for improved alleviation of antibiotic pollution in aquatic environments.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.