Affiliations 

  • 1 JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
  • 2 JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
  • 3 School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
  • 4 JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China. Electronic address: [email protected]
  • 5 Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
  • 6 JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China. Electronic address: [email protected]
Int J Biol Macromol, 2024 Jan;255:128086.
PMID: 37981278 DOI: 10.1016/j.ijbiomac.2023.128086

Abstract

Chitosan (CS) based nanoparticles (NPs) were fabricated via an ionic gelation reaction modified by flaxseed gum (FG) or sodium tripolyphosphate (STPP). The average particle size, morphology, interfacial tension, and wettability of NPs were characterized. The particle size of CS-STPP-HA (hyaluronic acid)-FA (ferulic acid) NPs and CS-FG-HA-FA NPs was 400.8 nm and 262.4 nm, respectively under the optimized conditions of CS/STPP = 5:1 (w/w) or CS/FG = 1:1 (v/v) with HA concentration of 0.25 mg/mL and FA dosage of 25 μM. FG acted as a good alternative for STPP to form particles with CS in stabilizing Pickering emulsion with an internal diacylglycerol (DAG) phase of 50-80 % (v/v). The complex nanoparticles had high surface activity and contact angle close to 90 °C, being able to tightly packed at the droplet surface. The emulsions had high thermal, ionic and oxidative stability. With the aid of moisturizing polysaccharides and DAG oil, the emulsions had a good sustained-release ability for FA with deeper penetration and retention into the dermis of the skin. Thus, FG and HA-based NPs serve as green vehicles for the fabrication of novel Pickering emulsions and possess great potential to be applied as a delivery system for lipophilic active agents in functional food and cosmetic products.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.