Affiliations 

  • 1 Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
  • 2 Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia; Advanced Sustainable Research Group (ASReG), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia; River of Life Kuantan Chapter, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
  • 3 Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia; Advanced Sustainable Research Group (ASReG), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia; River of Life Kuantan Chapter, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia. Electronic address: [email protected]
PMID: 37716039 DOI: 10.1016/j.saa.2023.123340

Abstract

A new thiosemicarbazone derivative, N-(2-hydroxyphenyl)-2-[1-(pyridin-4-yl)ethylidene]hydrazinecarbothioamide (HPEH), has been synthesized, characterized, and further developed as a highly selective and sensitive colorimetric chemosensor for Hg2+ recognition in environmental water samples. Structural conformers of HPEH were successfully identified using a combination of the potential energy surface (PES) and time-dependent density functional theory (TD-DFT) methods. The synthesized HPEH was successfully characterized further and analyzed based on its harmonic vibrational frequencies, NMR spectra, and electronic transitions using the DFT approach. Sigma profiles were generated using the COSMO-RS approach to identify a compatible medium for HPEH to act as a chemosensor. The conditions for the highly sensitive and selective detection of Hg2+ by HPEH were successfully optimized using the statistical response surface methodology approach. The optimum sensing of HPEH occurred in an 8:2 v/v DMSO/pH 7.8 solution at a 20:60 μM HPEH/Hg2+ concentration and after a reaction time of 18 min, with statistically significant independent variables (p 

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications