Affiliations 

  • 1 Sustainable Aquaculture, WorldFish, Jalan Batu Maung, Batu Maung, 11960, Bayan Lepas, Penang, Malaysia
Heliyon, 2023 Jun;9(6):e17221.
PMID: 37360106 DOI: 10.1016/j.heliyon.2023.e17221

Abstract

A 3 × 2 factorial experiment was conducted to investigate the effects of dietary lysine on growth performance, body indices, feed intake, feed efficiency, whole body nutrient composition and amino acid deposition in two successive generations (16th and 17th) of GIFT (Oreochromis niloticus). Three diets containing different levels of lysine at 1.16%, 1.56% and 2.41% were prepared for the feeding trial. Triplicate groups of fish with an initial body weight of 155 g were fed to apparent satiation for 10 weeks in a recirculating aquaculture system. Apparent digestibility coefficients (ADC) of dry matter, crude protein, crude lipids, and total carbohydrates were measured in the experimental diets. At the end of the experiment, no interactions between dietary lysine levels in diet and fish generation were observed on all parameters except for the condition factor (CF) and ADC of crude protein. However, dietary lysine level significantly affected the final weight, weight gain, thermal unit growth coefficient (TGC), protein efficiency ratio (PER) and ADC of dry matter regardless of the fish generation. Final weight, weight gain and TGC of fish were the highest in fish fed 2.41% dietary lysine in diet or 6.52% lysine in the protein. PER was the lowest in fish fed 1.16% dietary lysine. The final weight and the body's accumulation of isoleucine, phenylalanine, and alanine were significantly affected by the fish generation, with the 17th generation having the best performance. Increase growth and higher lysine requirement observed in the improved generation (17th) compared to the (16th) generation at grow out phase indicating that genetic improvement may have changed the dietary lysine requirement.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.