Browse publications by year: 2024

  1. Kouhi Fayegh A, Mat Din H, Wan Sulaiman WA, Ravanipour M, Basri H, Bin Mohamed MH, et al.
    Neuropsychiatr, 2024 Dec;38(4):174-181.
    PMID: 37184819 DOI: 10.1007/s40211-023-00467-y
    PURPOSE: Disturbances of sleep have frequently been reported in individuals with migraine. On top of this, an elderly patient with migraine also suffers from sleep disturbances due to changes in physiologic and mental health associated with aging. This study aimed to compare several sleep factors, namely sleep quality, chronotype, and obstructive sleep apnea (OSA) risk, between elderly people with and without migraine.

    METHODS: This was a multicenter cross-sectional study conducted in 10 neurologic clinics located in Tehran, Iran, over 2 years. The sample size was calculated as 189, including 63 migraine and 126 non-migraine patients.

    RESULTS: A significant difference was observed in the mean score of the global Pittsburgh Sleep Quality Index (PSQI) between migraine and non-migraine groups (p-value = 0.002), and in the individual components of the PSQI. However, there were no significant differences in the frequency of different types of chronotype (p-value = 0.125, T = 1.541) or OSA risk between the two groups (p-value = 0.568, T = -0.573). The binary logistic regression model showed that the relationship between global PSQI and migraine was significant (p = 0.002).

    CONCLUSION: Sleep quality is a problem for elderly migraine sufferers. Meanwhile, certain factors such as chronotype and OSA have no significant relationship with migraine among community-dwelling seniors. Further studies are required to enhance our understanding of this observation.

    MeSH terms: Aged; Cross-Sectional Studies; Female; Humans; Iran/epidemiology; Male; Middle Aged; Comorbidity
  2. Chin WS, Hung WL, Say YH, Chien LC, Chen YC, Lo YP, et al.
    Environ Pollut, 2024 Dec 15;363(Pt 1):125090.
    PMID: 39393761 DOI: 10.1016/j.envpol.2024.125090
    Chronic kidney disease (CKD) poses a significant global public health challenge, with environmental toxins potentially contributing to its prevalence. In Taiwan, where arsenic (As) contamination is endemic in certain areas, assessing its impact on renal health is crucial due to the country's high rates of unexplained CKD. This cross-sectional study assessed associations between urinary As species and early renal impairment biomarkers-the microalbumin-to-creatinine ratio (ACR) and β2-microglobulin (B2MG)-in 248 young Taiwanese adults (aged 20-29 years). We measured urinary As species (including arsenite [As3+], arsenate [As5+], monomethylarsonic acid [MMA], and dimethylarsinic acid [DMA]) and early renal impairment biomarkers (urinary microalbumin and B2MG levels). Median concentrations of urinary As3+, As5+, MMA, DMA, inorganic As (iAs), and the sum of inorganic and methylated As species (iSumAs) were 1.43, 1.02, 3.79, 31.53, 2.82, and 39.22 μg/g creatinine (Cre.), respectively. We also evaluated the first methylation ratio (FMR) and the second methylation ratio (SMR). After adjusting for potential confounding factors, a multivariate linear regression showed significant associations between B2MG and urinary As5+ (β = 0.299, 95% confidence interval [CI]: 0.113-0.485) and iAs (β = 0.281, 95% CI: 0.061-0.502) concentrations. A generalized additive model revealed non-linear relationships among As5+, iAs, and B2MG concentrations. Moreover, there were elevated risks associated with the highest tertile of B2MG concentrations compared to the highest tertile of urinary As5+ (odds ratio [OR] = 2.366, 95% CI: 1.196-4.682), MMA (OR = 1.917, 95% CI: 1.002-3.666), DMA (OR = 1.952, 95% CI: 1.015-3.753), and iSumAs (OR = 2.302, 95% CI: 1.182-4.483). These results indicated that exposure to As was associated with early renal impairment, particularly evidenced by increased urinary B2MG concentrations.
    MeSH terms: Adult; Arsenicals/urine; beta 2-Microglobulin/urine; Creatinine/urine; Cross-Sectional Studies; Environmental Pollutants/urine; Female; Humans; Male; Taiwan; Biomarkers/urine; Renal Insufficiency, Chronic/chemically induced; Renal Insufficiency, Chronic/metabolism; Renal Insufficiency, Chronic/epidemiology; Renal Insufficiency, Chronic/urine; Young Adult
  3. Li W, Ng TF, Ibrahim H, Wang SL
    PMID: 39401374 DOI: 10.1080/10962247.2024.2415298
    Over the past decades, the amount of waste has dramatically increased worldwide due to rapid population growth and urbanization. Inefficient waste collection and transportation, known as the waste collection vehicle routing problem (WCVRP), negatively impacts economic, environmental, and social dimensions. This issue has drawn considerable attention from local and national governments. There is an urgent need for sustainable practices in waste collection and transportation. This paper conducts an exhaustive literature review on the WCVRP. The review covers various aspects, including waste types, common model characteristics, objective functions, solution methods, datasets and case studies. The analysis indicates a need for further research on underrepresented waste types, such as medical waste (MW). It also stresses the importance of incorporating more model characteristics to better capture the complexities of real-world scenarios. Moreover, there is a lack of multiple objectives optimization models that concurrently address economic, environmental, and social dimensions, in line with sustainable development goals. Additionally, there is insufficient research on hybrid algorithms, especially regarding their application to uncertainty management and advanced techniques. Finally, the use of hybrid testing is restricted, highlighting the need for diverse tests to validate solution methods under various real-world conditions. This study outlines a roadmap for decision-makers in the WCVRP domain, offering opportunities for the evolution of more efficient, adaptable, and sustainable waste collection and transportation systems.Implications: The discussion of WCVRP is an urgent global concern in waste management that requires immediate attention. Through a multi-dimensional evaluation of the research papers, this review paper provides recommendations for future research and practice in WCVRP. Initially, while urban solid waste has received significant attention, other categories remain insufficiently examined. Future research should focus on efficient collection and transportation strategies for these types. Then, although common characteristics are well-explored, this review emphasizes the need for further investigation into lesser-studied characteristics and vehicle types in WCVRP models. Next, current models predominantly prioritize cost and public health exposure risk minimization. There is a necessity for more holistic approaches that incorporate multiple objectives, particularly those crucial for achieving sustainable development goals. Moreover, hybrid algorithms have emerged as efficient solutions, yet advanced technologies coupled with uncertainty management strategies remain underutilized, presenting significant potential to address the evolving complexities of WCVRP. Finally, the study highlights the importance of datasets and case studies in validating WCVRP models. Hybrid tests enable researchers to comprehensively evaluate WCVRP solutions, providing insight into their performance under various conditions. In conclusion, these implications offer a roadmap for advancing WCVRP research and guiding practical strategies to contribute to the development of more efficient, adaptable, and sustainable waste collection and transportation systems.
  4. Suleiman SB, Esa Y, Aziz D, Ani Azaman SN, Hassan NH, Syukri F
    Environ Pollut, 2024 Dec 15;363(Pt 1):125103.
    PMID: 39401561 DOI: 10.1016/j.envpol.2024.125103
    Microplastics (MPs) are widely used and disposed of indiscriminately, posing a potential threat to aquatic life. Herein, Asian seabass (Lates calcarifer) fingerlings were exposed to various concentrations (1, 10 and 100 ppt or g/kg) of dietary polyethylene MPs for 16 days. The results indicated a significant increase in mortality among the fish fed with dietary MPs compared to the control. Furthermore, histological analysis of the liver revealed moderate-to-severe morphological alterations, hepatocyte necrosis and vacuolisation as the concentration gradient of MPs increased. The severity of the alterations was highest at a concentration of 100 ppt, indicating a direct correlation between MP and liver damage. In addition, RNA sequencing and Gene Ontology term enrichment analysis revealed that a total of 4137 genes were significantly differentially expressed, with 1958 upregulated and 2179 downregulated genes. The significantly enriched terms included 'oxidoreductase activity', 'endocytosis', 'mitochondrial', 'immune system process' and 'lipid catabolic process'. Moreover, the Kyoto Encyclopaedia of Genes and Genomes enrichment analysis demonstrated that dietary MPs triggered oxidative stress, immune response and adaptive mechanism pathways in fish. Thus, MPs can induce metabolic disorders in L. calcarifer, highlighting their potential threat to aquatic organisms.
    MeSH terms: Animals; Liver/drug effects; Liver/metabolism; Oxidative Stress/drug effects
  5. Cheong SM, Joseph B, Ahmad Idham K, Ahmad Rusyaidi MM, Yong JC, Adiana G
    Mar Pollut Bull, 2024 Dec;209(Pt A):117102.
    PMID: 39406063 DOI: 10.1016/j.marpolbul.2024.117102
    Pulau Kapas is tropical island which dominantly depends on land-supplied and groundwater for freshwater sources. The groundwater quality was monitored monthly, to identify the possible factors effecting the groundwater quality throughout May to October 2022. Physico-chemical parameters were in-situ measured and groundwater were collected for nutrients analysis in the laboratory. The concentration of ammonium, phosphate, nitrite, and nitrate were in the range of 0.07-1.08 mg/L, 0.00-0.06 mg/L, BDL-18 × 10-4 mg/L and 0.01-0.19 mg/L, respectively. The cluster and principal component analysis unveiled the seawater intrusion for freshwater needs was the dominant factor affecting the groundwater. Followed by the dissolution of soil particles surrounds the groundwater table, and the surface run-off by rainfall. In conclusion, the groundwater was affected by geogenic factors as it was not extensively extracted due to movement control order of Covid-19 event. This has provided significant insight for a better management plan in sustaining the groundwater of Pulau Kapas.
    MeSH terms: Environmental Monitoring*; Nitrates/analysis; Nitrites/analysis; Phosphates/analysis; Seawater/chemistry; Water Quality; Islands; Ammonium Compounds/analysis
  6. Lim KP, Sun C, Yusoff S, Ding J, Loh KH, Li J, et al.
    Mar Pollut Bull, 2024 Dec;209(Pt A):117112.
    PMID: 39406069 DOI: 10.1016/j.marpolbul.2024.117112
    Microplastic contamination is an emerging concern in marine ecosystems, with limited knowledge on its impact on coral reefs, particularly in Malaysia. Surface waters were collected from several coral reef regions in Peninsular Malaysia by towing a plankton net behind the boat. Microplastics were detected at all sites, with a mean abundance of 0.344 ± 0.457 MP/m3. Perhentian Islands (0.683 ± 0.647 MP/m3) had significantly higher microplastic levels than Tioman Island (0.108 ± 0.063 MP/m3), likely due to oceanographic differences. Over half of the microplastics (55.7 %) were small microplastics (<1 mm), with the 0.05-0.5 mm size class being most abundant (29.2 %). Fragments and fibres dominated, and black, blue, and green were the prevalent colours. Polyethylene (PE), rayon (RY), chlorinated polyethylene (CPE), and polypropylene (PP) were the most common polymers. This study reveals the abundance and characteristics of microplastics, provides important data for further research on microplastics in coral reef ecosystem.
    MeSH terms: Environmental Monitoring*; Malaysia; Ecosystem; Risk Assessment; Polyethylene; Coral Reefs*
  7. Shankar VS, De K, Mandal S, Jacob S, Satyakeerthy TR
    Mar Pollut Bull, 2024 Dec;209(Pt A):117145.
    PMID: 39461182 DOI: 10.1016/j.marpolbul.2024.117145
    The increasing occurrence of mismanaged plastic litter along India's coastline and the ominous challenges it poses to biodiversity and ecosystem health is a growing environmental concern. To address this issue, we comprehensively investigated the abundance, composition, and probable sources of marine litter on North Cinque Island, a remote uninhabited island in the Andaman and Nicobar archipelago, Bay of Bengal. This island is a designated wildlife sanctuary and serves as an important nesting site for Green, Hawksbill and Leatherback turtles. A total of 6227 litter items were enumerated, with an average concentration of 0.12 items/m2, representing 20 diverse litter types, with plastic dominating the litter composition (86 %). The cleanliness and environmental hazards of the coast due to the litter were assessed using different indices such as the Clean Coast Index (CCI), Plastic Accumulation Index (PAI), Hazardous Item Index (HII), and Clean Environment Index (CEI). CCI indicates the moderately clean-to-clean status of the surveyed sites. PAI points to low to moderate accumulation of plastic litter. HII of all five coasts fell in category II, suggesting a moderate abundance of hazardous items that can inflict injuries to the foraging turtle and their hatchlings. The CEI articulates the moderately clean to very clean status of the sites. Litter brand audit suggests a considerable amount of stranded litter on the coasts was transboundary and originated from six Indian Ocean Rim Countries (IORC), namely Thailand, Myanmar, Malaysia, Indonesia, Sri Lanka, and UAE. Joint solid waste management by the IORC is the need of the hour to avert litter accumulation on the pristine, remote islands.
    MeSH terms: Animals; Environmental Monitoring*; India; Plastics; Turtles; Ecosystem; Risk Assessment; Biodiversity; Islands*
  8. Bao X, Sadiq M, Tye W, Zhang J
    J Environ Manage, 2024 Dec;371:123113.
    PMID: 39481154 DOI: 10.1016/j.jenvman.2024.123113
    As global concerns over climate change and sustainability grow, Environmental, Social, and Governance (ESG) factors have become critical in evaluating corporate practices. In China, the increasing adoption of ESG ratings by investors has highlighted discrepancies in these ratings, which may impact corporate risk. While extensive research exists on ESG performance, the effects of ESG rating disparities on corporate risk, particularly in Chinese enterprises, remain underexplored, especially the mediating role of financing constraints. Utilizing data from Chinese A-share listed companies from 2015 to 2022, this study examines the impact of Environmental, Social, and Governance (ESG) rating disparities on corporate risk, focusing on the mediating role of financing constraints. The findings indicate that discrepancies in ESG ratings significantly increase corporate risk, particularly in non-state-owned enterprises and heavily polluting industries, while having no significant impact on state-owned enterprises. Discrepancies in governance ratings exert the greatest impact on corporate risk, underscoring the critical role of corporate governance. Financing constraints further exacerbate the impact of rating discrepancies on corporate risk. These results provide new insights into enhancing the ESG rating system and mitigating corporate risk, offering a foundation for relevant policy-making.
    MeSH terms: China; Conservation of Natural Resources; Humans; Industry; Climate Change*
  9. Wang L, Qi Y, Cao L, Song L, Hu R, Li Q, et al.
    Environ Pollut, 2024 Dec 15;363(Pt 2):125228.
    PMID: 39486677 DOI: 10.1016/j.envpol.2024.125228
    Since the increasing number of polybutylene adipate terephthalate (PBAT)-based plastics entering the environment, the search for sustainable treatment methods has become a primary focus of contemporary research. Composting offers a novel approach for managing biodegradable plastics. However, a significant challenge in the composting process is how to control nitrogen loss and enhance plastic degradation. In this context, the effect of various additives on nitrogen retention, PBAT plastics degradation, and microbial community dynamics during composting was investigated. The findings revealed that the addition of nitrogen-fixing bacteria Azotobacter vinelandii and biochar (AzBC) significantly improved nitrogen retention and accelerated PBAT rupture within 40 days of composting. Specifically, the PBAT degradation rate in the AzBC group reached 29.6%, which increased by 12.14% (P 
    MeSH terms: Biodegradation, Environmental*; Phthalic Acids/metabolism; Plastics/metabolism; Polyesters/metabolism; Soil Microbiology; Soil Pollutants/metabolism; Azotobacter vinelandii/metabolism; Biodegradable Plastics/metabolism
  10. Jayawardane V, Anggraini V, Tran MV, Mirzababaei M, Syamsir A
    Environ Sci Pollut Res Int, 2024 Nov;31(54):63262-63286.
    PMID: 39480575 DOI: 10.1007/s11356-024-35401-4
    In municipal solid waste (MSW) landfills, biodegradation of the organic MSW fraction results in elevated waste and basal liner temperatures which have the potential to cause the clay component of the basal liner to experience severe moisture loss over time and eventually undergo desiccation cracking. Cracking of the basal liner's clay component would result in an uncontrolled release of contaminants into the surrounding environment and ultimately give rise to a variety of major environmental concerns. Accordingly, this study examined the variation of temperature-moisture profiles along the depth of a compacted clay liner (CCL) exposed to different constant elevated waste temperatures (CETs) in the absence and presence of two heat reduction techniques, respectively. Rockwool insulation layers with varying thicknesses and galvanized steel cooling pipes with varying flowrates were introduced separately as the two heat reduction techniques. Introduction of both techniques led to a significant attenuation of the temperature rise and desiccation experienced by the CCL in the face of different CETs. An increase in rockwool thickness increments led to a progressive reduction of CCL temperature, while an increase in flow rate under turbulent condition did not have a significant influence on the temperature and desiccation reduction of the CCL. Nevertheless, the present study certainly highlights the potential of the two proposed heat reduction techniques to minimize desiccation and consequently increase the service life of CCLs exposed to different elevated temperatures in MSW landfills.
    MeSH terms: Aluminum Silicates/chemistry; Hot Temperature*; Solid Waste*; Waste Disposal Facilities*
  11. Gong Y, Kang J, Wang M, Firdaus Mohd Hayati M, Wah Goh LP, Bin Syed Abdul Rahim SS
    Hum Vaccin Immunother, 2024 Dec 31;20(1):2429237.
    PMID: 39588915 DOI: 10.1080/21645515.2024.2429237
    Immunotherapy has emerged as a crucial advancement in pulmonary carcinoma treatment. Nevertheless, its unique side effects not only reduce patients' quality of life but also affect treatment efficacy, with severe cases potentially endangering the patient's life. This study uses bibliometric analysis to perform a comprehensive bibliometric analysis literature on IRAEs in lung cancer from 1991 to 2023, retrieved from the Web of Science database. The dataset was analyzed using VOSviewer and CiteSpace to identify trends, key contributors, and emerging research areas. A total of 124 publications were analyzed, revealing a notable increase in research activity post-2015, with China and the USA contributing over 50% of the studies. This research highlights the importance of understanding IRAEs and suggests future investigations into the pulmonary microbiota and tumor microenvironment.
    MeSH terms: Humans; Quality of Life; Bibliometrics*; Tumor Microenvironment/immunology; Drug-Related Side Effects and Adverse Reactions/epidemiology
  12. Ashrafzadeh A, Yajit NLM, Nathan S, Othman I, Karsani SA
    J Proteome Res, 2024 Nov 26.
    PMID: 39591502 DOI: 10.1021/acs.jproteome.4c00926
    Crossbreeding of zebu cattle (Bos indicus) with European breeds (Bos taurus) producing crossbred cattle was performed to overcome the low growth rates and milk production of indigenous tropical cattle breeds. However, zebu cattle fertility is higher than those of crossbred cattle and European breeds under warm conditions. Combination study of proteomics and metabolomics toward Malaysian indigenous breed Kedah × Kelantan-KK (B. indicus) and crossbreed Mafriwal-M (B. taurus × B. indicus) to understand physiological reasons for higher thermotolerance and fertility in Zebu cattle sperm. 161 regulated metabolites and 96 regulated proteins in KK and M (p < 0.05) showed more efficient carbohydrate and energy metabolism, higher integrity of the DNA and plasma membrane, a lower level of reactive oxygen species, and higher levels of phospholipids, which confirmed higher sperm plasma membrane integrity in KK. A stronger antioxidant system and lower polyunsaturated fatty acids help KK sperm cope with oxidative stress under warm conditions. The higher abundance of flagella structural proteins in KK provides a stronger structure that supports sperm motility. Abnormality of flagella, plasma membrane disruption, and DNA fragmentation were higher in M. These findings provide selective molecular markers for developing high-producing and more thermotolerant cattle breeds in tropical areas (197 words).
  13. Tan J, Feng L, Ragavan ND, Chai Theam O, Li X
    Biochem Biophys Res Commun, 2024 Nov 16;741:151013.
    PMID: 39591906 DOI: 10.1016/j.bbrc.2024.151013
    This study investigates the role of Caspase-11 in Chronic Kidney Disease (CKD) and examines the therapeutic potential of inhibiting Caspase-11 using exosome-mediated siRNA. We established a CKD rat model and analyzed the expression of Caspase-11 through immunohistochemistry. The study involved overexpressing Caspase-11 using an adeno-associated virus (AAV) and constructing exosomes loaded with siRNA targeting Caspase-11 (exo-si-Caspase-11). Renal tissue damage and fibrosis were assessed using H&E staining, Masson's trichrome, TUNEL assay, and Sirius Red staining. Additionally, urinary protein and blood urea nitrogen (BUN) levels were measured, alongside analyses of serum calcium and phosphorus levels. H&E staining was performed to evaluate the effects of exo-si-Caspase-11 on damage to the heart, liver, spleen, and lungs. The results showed that the CKD model group experienced significant weight loss, increased blood pressure, and elevated Caspase-11 expression. AAV-mediated Caspase-11 overexpression led to substantial renal fibrosis, increased apoptosis, and elevated urinary protein and BUN levels. Additionally, the group with Caspase-11 overexpression exhibited elevated serum calcium and phosphorus levels. Conversely, treatment with exo-si-Caspase-11 reduced these pathological changes in renal tissue without causing damage to other major organs. These findings suggest that exosome-mediated siRNA delivery targeting Caspase-11 is an effective therapeutic strategy for CKD.
  14. Low JSY, Teh HF, Thevarajah TM, Chang SW, Khor SM
    Biosens Bioelectron, 2024 Nov 16;270:116949.
    PMID: 39591924 DOI: 10.1016/j.bios.2024.116949
    SERS detects single molecules with exceptional sensitivity. To counter the issue of selectivity faced by point-of-care, herein, an externally applied electric field that allows electrical modulation and electromigrates unbound SERS tags without multiple washing steps is successfully developed and demonstrated to improve the biosensor's selectivity and sensitivity in multiplexed detection of cTnI, HDL, and LDL in human serum at a low LoD. Ultra-sensitive detectors can detect signals from non-specifically absorbed species, and these species can cover up overlapping analyte peaks, amplifying the effect of non-specific binding. Even though antifouling molecules can prevent non-specific adsorption at the sensor interface, this approach does not completely eliminate it. Our significant findings show that an electrically regulated device can electromigrate non-specifically bound species without cross-reacting with endogenous albumin proteins. Stability, repeatability, and reproducibility were good, with an RSD of 10%. Artificial intelligence was employed to interpret and analyze high-dimensional fingerprint SERS spectra using feature selection and dimensionality reduction for accurate acute myocardial infarction diagnosis and prognosis. These machine learning methods allow quantification of cTnI, HDL, and LDL biomarkers with low RMSE. Machine learning classifiers showed strong AUROC values of 0.950 ± 0.111 and 0.884 ± 0.139 for early and recurrent AMI detection, respectively. A high negative predictive value (NPV) of ≥99% indicates an effective early AMI rule-out. In short, this work demonstrated that a simple, low-cost, electrophoretic modulated biosensor with machine learning can diagnose, rule out, and predict recurring AMI.
  15. Bertossi D, Denkova R, Hoo AJS, Loh D, Murdoch M, Shturman Sirota I, et al.
    J Cosmet Dermatol, 2024 Nov 26.
    PMID: 39591976 DOI: 10.1111/jocd.16555
    BACKGROUND: VYC-25L is a robust, structural hyaluronic acid (HA) filler designed for facial volumizing, lifting, and contouring. It was first approved in 2019.

    METHODS: A group of doctors with various specialties, who have used VYC-25L extensively since it first became available in their countries (3-5 years), share clinical experience and guidance on optimal use.

    RESULTS: VYC-25L has a unique rheological and physicochemical profile that provides elevated lift capacity and enhanced projection, significant moldability immediately after injection, high levels of tissue integration, reversibility with hyaluronidase, and a long duration of clinical effects-typically lasting at least 24 months. The properties of VYC-25L have created new possibilities for nonsurgical facial medical aesthetics. However, as with any novel product, it is important that injectors recognize how best to use it for the benefit of patients. When first utilizing VYC-25L, it is advisable to start with the chin and jawline to gain familiarity with the gel characteristics before moving into other facial areas, and to consider splitting treatment over two or more sessions. Attention must also be given to injection volume, with less product typically required with VYC-25L compared to other fillers with similar indications. Key principles of good practice should be followed, including appropriate patient selection and pretreatment education, suitable choice of injection device and plane, aseptic technique, slow and careful administration method, and sufficient posttreatment follow-up.

    CONCLUSIONS: By adhering to these principles, VYC-25L can produce natural-looking and highly durable outcomes without substantial safety concerns.

  16. Ahmed S, Islam MS, Antu UB, Islam MM, Rajput VD, Mahiddin NA, et al.
    Int J Biol Macromol, 2024 Nov 24.
    PMID: 39592042 DOI: 10.1016/j.ijbiomac.2024.137979
    Nanocellulose, obtained from natural cellulose, has attracted considerable interest for its distinctive properties and wide-ranging potential applications. Studies suggest that nanocellulose improves the thermal, mechanical, and barrier properties of conventional cellulose. This review investigates the production, properties, approach, and application of nanocellulose from various sources in agriculture. The main role play of cellulose-nanocomposite is discussed as a seed coating agent to improve seed dispersal, germination, protection against fungi and insects, plant growth promoter, adsorption of targeted pollutants, providing water and nutrient retention, and other advantages. As a nobility, we included all mechanical, chemical, and static culture approaches to the production procedure of nanocellulose and its application as a nanocarrier in soil, including the unique properties of nanocellulose, such as its high surface area, inherent hydrophilicity, and ease of surface modification. Here, methods such as melt compounding, solution casting, and in situ polymerization were evaluated to incorporate nanoparticles into cellulose materials and produce nanocellulose and cellulose-nanocomposites with improved strength, stability, water resistance, and reduced gas permeability. The commercialization faces challenges such as high production costs, scalability issues, and the need for more research on environmental impacts and plant interactions. Despite these hurdles, this field is promising, with ongoing advancements likely to yield new and improved agricultural materials. This review thoroughly examines the innovative application of nanocellulose in slow and controlled-release fertilizers and pesticides, to transform nutrient management, boost crop productivity, and minimize the environmental impact.
  17. Tharanga S, Ünlü ES, Hu Y, Sjaugi MF, Çelik MA, Hekimoğlu H, et al.
    Brief Bioinform, 2024 Nov 22;26(1).
    PMID: 39592151 DOI: 10.1093/bib/bbae607
    Sequence diversity is one of the major challenges in the design of diagnostic, prophylactic, and therapeutic interventions against viruses. DiMA is a novel tool that is big data-ready and designed to facilitate the dissection of sequence diversity dynamics for viruses. DiMA stands out from other diversity analysis tools by offering various unique features. DiMA provides a quantitative overview of sequence (DNA/RNA/protein) diversity by use of Shannon's entropy corrected for size bias, applied via a user-defined k-mer sliding window to an input alignment file, and each k-mer position is dissected to various diversity motifs. The motifs are defined based on the probability of distinct sequences at a given k-mer alignment position, whereby an index is the predominant sequence, while all the others are (total) variants to the index. The total variants are sub-classified into the major (most common) variant, minor variants (occurring more than once and of incidence lower than the major), and the unique (singleton) variants. DiMA allows user-defined, sequence metadata enrichment for analyses of the motifs. The application of DiMA was demonstrated for the alignment data of the relatively conserved Spike protein (2,106,985 sequences) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the relatively highly diverse pol gene (2637) of the human immunodeficiency virus-1 (HIV-1). The tool is publicly available as a web server (https://dima.bezmialem.edu.tr), as a Python library (via PyPi) and as a command line client (via GitHub).
    MeSH terms: Algorithms; Humans; Software*; Genetic Variation*; Viruses/classification; Viruses/genetics; HIV-1/classification; HIV-1/genetics; Computational Biology/methods
  18. Haysom-McDowell A, Paudel KR, Yeung S, Kokkinis S, El Sherkawi T, Chellappan DK, et al.
    Mol Oncol, 2024 Nov 26.
    PMID: 39592417 DOI: 10.1002/1878-0261.13764
    Lung cancer is the leading cause of cancer death globally, with non-small cell lung cancer accounting for the majority (85%) of cases. Standard treatments including chemotherapy and radiotherapy present multiple adverse effects. Medicinal plants, used for centuries, are traditionally processed by methods such as boiling and oral ingestion, However, water solubility, absorption, and hepatic metabolism reduce phytoceutical bioavailability. More recently, isolated molecular compounds from these plants can be extracted with these phytoceuticals administered either individually or as an adjunct with standard therapy. Phytoceuticals have been shown to alleviate symptoms, may reduce dosage of chemotherapy and, in some cases, enhance pharmaceutical mechanisms. Research has identified many phytoceuticals' actions on cancer-associated pathways, such as oncogenesis, the tumour microenvironment, tumour cell proliferation, metastasis, and apoptosis. The development of novel nanoparticle delivery systems such as solid lipid nanoparticles, liquid crystalline nanoparticles, and liposomes has enhanced the bioavailability and targeted delivery of pharmaceuticals and phytoceuticals. This review explores the biological pathways associated with non-small cell lung cancer, a diverse range of phytoceuticals, the cancer pathways they act upon, and the pros and cons of several nanoparticle delivery systems.
External Links