OBJECTIVES: To analyze the presence of DPOAE across frequencies and DP amplitude in infants with and without IDA.
METHOD: DPOAE were recorded on 40 infants with IDA and 40 infants without IDA in the age range of 6-24 months. Cubic DPOAEs (2f1-f2) were measured at six f2 frequencies (1500 Hz, 2000 Hz, 3000 Hz, 4500 Hz, 6000 Hz & 8000 Hz) with primary tone stimulus of intensity L1 equal to 65 dBSPL and L2 equal to 55 dBSPL. Immittance audiometry was performed using 226 Hz probe tone prior to DPOAE recording to ascertain normal middle ear functioning.
RESULTS: DPOAEs were present in all infants with and without IDA across frequencies tested. DP amplitude across the frequencies did not show any statistically significant difference (p
DESIGN AND STUDY SAMPLE: Study 1 determined ETSPL values in 25 normal-hearing subjects aged 18-25 years at seven test frequencies (500-8000 Hz). Study 2 assessed the intra- and inter-session test-retest threshold reliability in a separate group of 50 adult subjects.
RESULTS: The ETSPL values for the consumer IE deviated from the reference values for audiometric IEs, with the largest differences (7-9 dB) observed at 500 Hz across ear tips. This is likely related to shallow tip insertions. However, test-retest threshold variations were comparable to those reported for audiometric transducers.
CONCLUSIONS: Ear tip-specific corrections to the reference thresholds in the standards are required for calibration of consumer IEs used in low-cost audiometry when their ear tips only allow superficial insertion into the ear canal.
DESIGN: Forty-four full-term healthy neonates (17 males and 27 females) participated in a longitudinal study. The neonates were assessed at 1-month intervals from 0 to 6 months of age using high-frequency tympanometry, acoustic stapedial reflex, distortion product otoacoustic emissions, and pressurized WBA. The values of WBA at tympanometric peak pressure (TPP) and 0 daPa across the frequencies from 0.25 to 8 kHz were analyzed as a function of age.
RESULTS: A linear mixed model analysis, applied to the data, revealed significantly different WBA patterns among the age groups. In general, WBA measured at TPP and 0 daPa decreased at low frequencies (<0.4 kHz) and increased at high frequencies (2 to 5and 8 kHz) with age. Specifically, WBA measured at TPP and 0 daPa in 3- to 6-month-olds was significantly different from that of 0- to 2-month-olds at low (0.25 to 0.31 kHz) and high (2 to 5 and 8 kHz) frequencies. However, there were no significant differences between WBA measured at TPP and 0 daPa for infants from 3 to 6 months of age.
CONCLUSIONS: The present study provided clear evidence of maturation of the outer and middle ear system in healthy infants from birth to 6 months. Therefore, age-specific normative data of pressurized WBA are warranted.
OBJECTIVE: To study the effectiveness of distortion product otoacoustic emission (DPOAE) and automated auditory brainstem response (AABR) as first screening tool among non-risk newborns in a hospital with high delivery rate.
METHOD: A total of 722 non-risk newborns (1444 ears) were screened with both DPOAE and AABR prior to discharge within one month. Babies who failed AABR were rescreened with AABR ± diagnostic auditory brainstem response tests within one month of age.
RESULTS: The pass rate for AABR (67.9%) was higher than DPOAE (50.1%). Both DPOAE and AABR pass rates improved significantly with increasing age (p-value<0.001). The highest pass rate for both DPOAE and AABR were between the age of 36-48 h, 73.1% and 84.2% respectively. The mean testing time for AABR (13.54 min ± 7.47) was significantly longer than DPOAE (3.52 min ± 1.87), with a p-value of <0.001.
CONCLUSIONS: OAE test is faster and easier than AABR, but with higher false positive rate. The most ideal hearing screening protocol should be tailored according to different centre.
METHOD: A cross-sectional study was conducted among 205 normal hearing adult participants with an age range between 25 and 54 years old. Hearing analysis with extended high-frequency pure-tone audiometry (PTA) and high-frequency DPOAE was carried out for all eligible participants. High-frequency presbycusis was considered to be present when the impairment of more than 25 dB occurs at higher than 8 kHz frequencies on both ears.
RESULTS: Prevalence of high-frequency presbycusis using extended PTA was 31.7 (95% CI: 25.3, 38.1) and using high-frequency DPOAE was 57.4 (95% CI: 50.7, 64.4). The sensitivity and specificity of high-frequency DPOAE in detecting high-frequency presbycusis were 72.3 and 49.3% respectively with positive predictive value of 39.8% and negative predictive value of 79.3%. The association between age and high-frequency presbycusis was significant based on high-frequency DPOAE (p = 0.029).
CONCLUSIONS: The prevalence of high-frequency hearing loss is higher with increasing in age. High-frequency DPOAE may be used as a screening tool followed by confirmation using extended PTA. The early detection of presbycusis is important so that measures can be taken to prevent more severe problems developing.
Method: Participants of this cross-sectional study included 99 full-term neonates (165 ears) with mean chronological age of 46.7 hrs (SD = 26.3 hrs). Of the 99 neonates, 58 were Malay, 28 were Indian, and 13 were Chinese. The neonates who passed high-frequency (1 kHz) tympanometry, acoustic stapedial reflex, and distortion product otoacoustic emission screening tests were assessed using a pressurized WBA test (wideband tympanometry). To reduce the number of measurement points, the WBA responses were averaged to 16 one-third octave frequency bands from 0.25 to 8 kHz. A mixed-model analysis of variance was applied to the data to investigate the effects of frequency, ear, gender, and ethnicity on WBA. The analysis of variance was also used to compare between WBA measured at TPP and 0 daPa. An interclass correlation coefficient test was applied at each of the 16 frequency bands to measure the test-retest reliability of WBA at TPP and 0 daPa.
Results: Both WBA measurements at TPP and 0 daPa exhibited a multipeaked pattern with 2 maxima at 1.25-1.6 kHz and 6.3 kHz and 2 minima at 0.5 and 4 kHz. The mean WBA measured at TPP was significantly higher than that measured at 0 daPa at 0.25, 0.4, 0.5, 1.25, and 1.6 kHz only. A normative data set was developed for absorbance at TPP and at 0 daPa. There was no significant effect of ethnicity, gender, and ear on both measurements of WBA. The test-retest reliability of WBA at TPP and 0 daPa was high with the interclass correlation coefficient ranging from 0.77 to 0.97 across the frequencies.
Conclusions: Normative data of WBA measured at TPP and 0 daPa for neonates were provided in the present study. Although WBA at TPP was slightly higher than the WBA measured at 0 daPa at some frequencies below 2 kHz, the WBA patterns of the 2 measurements were nearly identical. Moreover, the test-retest reliability of both WBA measurements was high.
Methods: This cohort study was designed to screen the hearing of newborns using transiently evoked otoacoustic emission and auditory brain stem response, and to determine the risk factors associated with hearing loss of newborns in 3 tertiary hospitals in Northern Thailand. Data were prospectively collected from November 1, 2010 to May 31, 2012. To develop the risk score, clinical-risk indicators were measured by Poisson risk regression. The regression coefficients were transformed into item scores dividing each regression-coefficient with the smallest coefficient in the model, rounding the number to its nearest integer, and adding up to a total score.
Results: Five clinical risk factors (Craniofacial anomaly, Ototoxicity, Birth weight, family history [Relative] of congenital sensorineural hearing loss, and Apgar score) were included in our COBRA score. The screening tool detected, by area under the receiver operating characteristic curve, more than 80% of existing hearing loss. The positive-likelihood ratio of hearing loss in patients with scores of 4, 6, and 8 were 25.21 (95% confidence interval [CI], 14.69-43.26), 58.52 (95% CI, 36.26-94.44), and 51.56 (95% CI, 33.74-78.82), respectively. This result was similar to the standard tool (The Joint Committee on Infant Hearing) of 26.72 (95% CI, 20.59-34.66).
Conclusion: A simple screening tool of five predictors provides good prediction indices for newborn hearing loss, which may motivate parents to bring children for further appropriate testing and investigations.
METHODS: A retrospective descriptive cohort study on the audiological findings detected during the first hearing assessment done on a child with craniosynostosis using otoacoustic emissions, pure tone audiometry or auditory brainstem response examination. The main aim of this study was to evaluate the type and severity of hearing loss when compared between syndromic and non-sydromic craniosynostosis, and other associated contributory factors.
RESULTS: A total of 31 patients with 62 ears consisting of 14 male patients and 17 female patients were evaluated. Twenty two patients (71%) were syndromic and 9 (29%) were non-syndromic craniosynostosis. Amongst the syndromic craniosynostosis, 9 (41%) had Apert syndrome, 7 (32%) had Crouzon syndrome, 5 (23%) had Pfieffer syndrome and 1 (4%) had Shaethre Chotzen syndrome. Patients with syndromic craniosynostosis were more likely to present with all types and severity of hearing loss, including severe to profound sensorineural hearing loss while children with non-syndromic craniosynostosis were likely to present with normal hearing (p