Displaying publications 1 - 20 of 104 in total

Abstract:
Sort:
  1. Ukrainskaya V, Rubtsov Y, Pershin D, Podoplelova N, Terekhov S, Yaroshevich I, et al.
    Small, 2021 11;17(45):e2102643.
    PMID: 34605165 DOI: 10.1002/smll.202102643
    Development of CAR-T therapy led to immediate success in the treatment of B cell leukemia. Manufacturing of therapy-competent functional CAR-T cells needs robust protocols for ex vivo/in vitro expansion of modified T-cells. This step is challenging, especially if non-viral low-efficiency delivery protocols are used to generate CAR-T cells. Modern protocols for CAR-T cell expansion are imperfect since non-specific stimulation results in rapid outgrowth of CAR-negative T cells, and removal of feeder cells from mixed cultures necessitates additional purification steps. To develop a specific and improved protocol for CAR-T cell expansion, cell-derived membrane vesicles are taken advantage of, and the simple structural demands of the CAR-antigen interaction. This novel approach is to make antigenic microcytospheres from common cell lines stably expressing surface-bound CAR antigens, and then use them for stimulation and expansion of CAR-T cells. The data presented in this article clearly demonstrate that this protocol produced antigen-specific vesicles with the capacity to induce stronger stimulation, proliferation, and functional activity of CAR-T cells than is possible with existing protocols. It is predicted that this new methodology will significantly advance the ability to obtain improved populations of functional CAR-T cells for therapy.
    Matched MeSH terms: Immunotherapy, Adoptive*
  2. Dutta S, Singhal S, Shah RB, Haque M
    Crit Rev Oncog, 2022;27(4):23-37.
    PMID: 37199300 DOI: 10.1615/CritRevOncog.2022046361
    Oral cancers (OCs), being one of the frequent malignancies in the head and neck region, need prompt diagnosis and treatment. Apart from basic therapeutic modalities, immunotherapy has now been utilized as a novel approach to combat the disease. With the comprehension of the strategies adopted by cancer cells to evade the immune elimination by the body's immune system, targeted immunotherapies have now become the core area of research. The immune expression of epidermal growth factor receptor (EGFR), programmed cell death protein ligand-1 (PDL-1), etc., are enhanced in OC and have been associated with evasion of the immune system. Targeted immunotherapies now include monoclonal antibodies targeting EGFR like cetuximab and panitumumab, programmed cell death-1 (PD-1) inhibitors like pembrolizumab, cemiplimab, and nivolumab, and PD-L1 inhibitors like atezolizumab, avelumab, and durvalumab. Targeted immunotherapies like chimeric antigen receptor T-cell treatment and small molecule inhibitors are in several clinical trials tried as monotherapy and adjuvant immunotherapy and have shown promising results. Other immunothera-peutic approaches such as cytokines like interferons or interleukins, vaccines, and gene therapy have also been an area of research for the management of OC. However, the cautious selection of appropriate patients with specific immune characteristics as a candidate for immunotherapeutic agents is a crucial component of targeted immunotherapy. This article elaborates on the immune contexture of oral cancer cells, the mechanism of immune evasion by cancer cells, targets for immunotherapies, existent immunotherapeutic agents, and prospects in the field of immunotherapy.
    Matched MeSH terms: Immunotherapy/methods
  3. Foo YY, Tiah A, Aung SW
    Clin Exp Immunol, 2023 Jun 05;212(3):212-223.
    PMID: 36866467 DOI: 10.1093/cei/uxad030
    Natural killer (NK) cells possess the innate ability to eliminate cancerous cells effectively. Their crucial role in immunosurveillance has been widely recognized and exploited for therapeutic intervention. Despite the fast-acting nature of NK cells, NK adoptive cell transfer lacks favorable response in some patients. Patient NK cells often display diminished phenotype in preventing cancer progression resulting in poor prognosis. Tumor microenvironment plays a significant role in causing the downfall of NK cells in patients. The release of inhibitory factors by tumor microenvironment hinders normal function of NK cells against tumor. To overcome this challenge, therapeutic strategies such as cytokine stimulation and genetic manipulation are being investigated to improve NK tumor-killing capacity. One of the promising approaches includes generation of more competent NK cells via ex vivo cytokines activation and proliferation. Cytokine-induced ML-NK demonstrated phenotypic alterations such as enhanced expression of activating receptors which help elevate their antitumor response. Previous preclinical studies showed enhanced cytotoxicity and IFNγ production in ML-NK cells compared to normal NK cells against malignant cells. Similar effects are shown in clinical studies in which MK-NK demonstrated encouraging results in treating hematological cancer. However, there is still a lack of in-depth studies using ML-NK in treating different types of tumors and cancers. With convincing preliminary response, this cell-based approach could be used to complement other therapeutic modalities to achieve better clinical outcomes.
    Matched MeSH terms: Immunotherapy; Immunotherapy, Adoptive/methods
  4. Chanthira Kumar H, Lim XY, Mohkiar FH, Suhaimi SN, Mohammad Shafie N, Chin Tan TY
    Integr Cancer Ther, 2022;21:15347354221132848.
    PMID: 36448674 DOI: 10.1177/15347354221132848
    Cancer is a major cause of morbidity and mortality worldwide and therefore there has been interest in discovering the phytoconstituents of medicinal plants exhibiting anticancer activities. Morinda citrifolia L., commonly known as Noni, has shown anticancer properties in in vitro, in vivo, and in clinical studies. A systematic review was conducted to collate scientific evidence on the anticancer properties of M. citrifolia using pre-determined keywords on 5 electronic databases: MEDLINE, CENTRAL, LILACS, Web of Science, and EBSCOHost. A total of 51 clinical and preclinical studies comprising 41 efficacy and 10 safety studies were included in this review. Our findings showed that M. citrifolia demonstrated various anticancer properties in different cancer models, via multiple mechanisms including antitumor, antiproliferative, pro-apoptotic, antiangiogenesis, antimigratory, anti-inflammatory, and immunomodulatory activities. M. citrifolia is deemed to be a potentially valuable medicinal plant in the treatment of cancer through its many intrinsic pathways. More well-designed and reported preclinical efficacy and safety studies are needed to allow for better translation into future clinical studies which could further substantiate the role of M. citriflolia in cancer treatment.
    Matched MeSH terms: Immunotherapy
  5. Rus Bakarurraini NAA, Ab Mutalib NS, Jamal R, Abu N
    Vaccines (Basel), 2020 Jul 10;8(3).
    PMID: 32664247 DOI: 10.3390/vaccines8030371
    Over the last few decades, major efforts in cancer research and treatment have intensified. Apart from standard chemotherapy approaches, immunotherapy has gained substantial traction. Personalized immunotherapy has become an important tool for cancer therapy with the discovery of immune checkpoint inhibitors. Traditionally, tumor-associated antigens are used in immunotherapy-based treatments. Nevertheless, these antigens lack specificity and may have increased toxicity. With the advent of next-generation technologies, the identification of new tumor-specific antigens is becoming more important. In colorectal cancer, several tumor-specific antigens were identified and functionally validated. Multiple clinical trials from vaccine-based and adoptive cell therapy utilizing tumor-specific antigens have commenced. Herein, we will summarize the current landscape of tumor-specific antigens particularly in colorectal cancer.
    Matched MeSH terms: Immunotherapy; Immunotherapy, Adoptive
  6. Wan Ahmad Kammal WSL, Jamil A, Md Nor N
    Dermatol Ther, 2021 09;34(5):e15080.
    PMID: 34351693 DOI: 10.1111/dth.15080
    Cryotherapy is a standard treatment for warts. Tuberculin immunotherapy is a novel therapeutic option. We compared the efficacy and safety of cryotherapy versus tuberculin immunotherapy in a randomized, assessor-blinded study. 15 patients were treated with intralesional tuberculin and 15 patients received cryotherapy every 2 weeks until complete wart resolution or a maximum of six sessions. Wart diameter, total number of warts and adverse effects were documented. Complete clearance of treated warts was achieved in 13(86.7%) and 11(73.3%) of patients with immunotherapy and cryotherapy respectively. Immunotherapy showed greater wart size reduction (51.88 ± 89.36 mm) than cryotherapy (32.99 ± 36.19 mm), (p = 0.46). Immunotherapy resulted in 64% reduction in total number of warts compared to 23.2% with cryotherapy, p 
    Matched MeSH terms: Immunotherapy
  7. Wong PY, How SH, Ismail I, Hassan R
    J Oncol Pharm Pract, 2022 Mar;28(2):471-474.
    PMID: 34565238 DOI: 10.1177/10781552211038899
    INTRODUCTION: Immunotherapy has been recognized as the standard of care in addition to chemotherapy in the treatment of advanced non-small cell lung cancer. Most immunotherapy trials, however, exclude patients with autoimmune disease owing to concerns of disease exacerbation.

    CASE REPORT: We report a case of a patient with advanced non-small cell lung cancer and underlying active psoriasis who experienced a remarkable response, without developing psoriasis flares, following treatment with a single dose of atezolizumab and first-line chemotherapy.

    MANAGEMENT AND OUTCOME: The patient remained asymptomatic 10 months since treatment discontinuation, without disease progression, despite having received only a single dose of atezolizumab and six cycles of chemotherapy.

    DISCUSSION: Little is known about the optimum duration required to achieve a durable response with immunotherapy. Patients with autoimmune disease are commonly excluded from immunotherapy trials owing to a higher risk of autoimmune disease flares or immune-related adverse events. The remarkable outcome observed in this case offers some insights into the possible durable response with limited doses of immunotherapy and a safer approach for administering immunotherapy in patients with autoimmune disease. Initiating chemotherapy to induce remission in active autoimmune disease prior to administering immunotherapy could potentially be an ideal approach that facilitates the use of immunotherapy in this patient population.

    Matched MeSH terms: Immunotherapy
  8. Fadilah SA, Cheong SK
    Malays J Pathol, 2007 Jun;29(1):1-18.
    PMID: 19108040 MyJurnal
    Owing to the importance of dendritic cells (DC) in the induction and control of immunity, an understanding of their biology is central to the development of potent immunotherapies for cancer, chronic infections, autoimmune disease, and induction of transplantation tolerance. This review surveys the heterogeneity of DC with regards to their phenotype and developmental origin, and how they initiate, modify and regulate the immune response, with emphasis on their maturation, migration, antigen-presentation and interaction with T cells and other immune cells. Much of this knowledge is obtained through research on murine DC. Research on human DC has been hampered by limitations associated with in vitro assays and limited access to human tissues. New approaches on human DC research are required in order to develop novel strategies for the treatment of microbial infections, the control of graft rejection, and the improvement of DC-based immunotherapeutic protocols for autoimmunity, allergy, and cancer.
    Matched MeSH terms: Immunotherapy/methods*
  9. Ng PY, Chang IS, Koh RY, Chye SM
    Metab Brain Dis, 2020 10;35(7):1049-1066.
    PMID: 32632666 DOI: 10.1007/s11011-020-00591-6
    Alzheimer's disease (AD) has been a worldwide concern for many years now. This is due to the fact that AD is an irreversible and progressive neurodegenerative disease that affects quality of life. Failure of some Phase II/III clinical trials in AD targeting accumulation of β-amyloid in the brain has led to an increase in interest in studying alternative treatments against tubulin-associated unit (Tau) pathology. These alternative treatments include active and passive immunisation. Based on numerous studies, Tau is reported as a potential immunotherapeutic target for tauopathy-related diseases including AD. Accumulation and aggregation of hyperphosphorylated Tau as neuropil threads and neurofibrillary tangles (NFT) are pathological hallmarks of AD. Both active and passive immunisation targeting Tau protein have shown the capabilities to decrease or prevent Tau pathology and improve either motor or cognitive impairment in various animal models. In this review, we summarise recent advances in active and passive immunisation targeting pathological Tau protein, and will discuss with data obtained from both animal and human trials. Together, we give a brief overview about problems being encountered in these immunotherapies.
    Matched MeSH terms: Immunotherapy/methods*
  10. Mu Y, Tong J, Wang Y, Yang Y, Wu X
    Front Immunol, 2023;14:1213161.
    PMID: 37457710 DOI: 10.3389/fimmu.2023.1213161
    Adoptive transfer of natural killer (NK) cells represents a viable treatment method for patients with advanced malignancies. Our team previously developed a simple, safe, and cost-effective method for obtaining high yields of pure and functional NK cells from cord blood (CB) without the need for cell sorting, feeder cells, or multiple cytokines. We present the case of a 52-year-old female patient diagnosed with poorly differentiated stage IVB (T3N2M1) endometrial cancer, who exhibited leukemoid reaction and pretreatment thrombocytosis as paraneoplastic syndromes. The patient received two courses of CB-derived NK (CB-NK) cell immunotherapy between March and September 2022, due to her extremely low NK cell activity. Two available CB units matched at 8/10 HLA with KIR-mismatch were chosen, and we were able to produce NK cells with high yield (>1.0×1010 NK cells), purity (>90%), and function (>80%) from CB without cell sorting, feeder cells, or multiple cytokines. These cells were then adoptively transferred to the patient. No adverse effects or graft-versus-host disease were observed after infusion of CB-NK cells. Our clinical experience supports the efficacy of CB-NK cell treatment in increasing NK cell activity, depleting tumor activity, improving quality of life, and reducing the size of abdominal and pelvic masses with the disappearance of multiple lymph node metastases through the regulation of systemic antitumor immunity. Remarkably, the white blood cell and platelet counts decreased to normal levels after CB-NK cell immunotherapy. This clinical work suggests that CB-NK cell immunotherapy holds promise as a therapeutic approach for endometrial cancer.
    Matched MeSH terms: Immunotherapy/methods
  11. Nguyen NP, Baumert BG, Oboite E, Motta M, Appalanaido GK, Arenas M, et al.
    Gerontology, 2021;67(4):379-385.
    PMID: 33784693 DOI: 10.1159/000514451
    BACKGROUND: Older cancer patients with locally advanced or metastatic disease may benefit from chemotherapy alone or combined with radiotherapy. However, chemotherapy is often omitted either because of physician bias or because of its underlying comorbidity, thus compromising their survival. The coronavirus disease 19 (COVID-19) pandemic is compounding this issue because of the fear of immunosuppression induced by chemotherapy on the elderly which makes them more vulnerable to the virus.

    SUMMARY: Immunotherapy has less effect on the patient bone marrow compared to chemotherapy. The potential synergy between radiotherapy and immunotherapy may improve local control and survival for older patients with selected cancer. Preliminary data are encouraging because of better survival and local control in diseases which are traditionally resistant to radiotherapy and chemotherapy such as melanoma and renal cell carcinoma. Key Message: We propose a new paradigm combining immunotherapy at a reduced dose and/or extended dosing intervals and hypofractionated radiotherapy for older patients with selected cancer which needs to be tested in future clinical trials.

    Matched MeSH terms: Immunotherapy/adverse effects*
  12. Cowan AJ, Pont MJ, Sather BD, Turtle CJ, Till BG, Libby EN, et al.
    Lancet Oncol, 2023 Jul;24(7):811-822.
    PMID: 37414012 DOI: 10.1016/S1470-2045(23)00246-2
    BACKGROUND: γ-Secretase inhibitors (GSIs) increase B cell maturation antigen (BCMA) density on malignant plasma cells and enhance antitumour activity of BCMA chimeric antigen receptor (CAR) T cells in preclinical models. We aimed to evaluate the safety and identify the recommended phase 2 dose of BCMA CAR T cells in combination with crenigacestat (LY3039478) for individuals with relapsed or refractory multiple myeloma.

    METHODS: We conducted a phase 1, first-in-human trial combining crenigacestat with BCMA CAR T-cells at a single cancer centre in Seattle, WA, USA. We included individuals aged 21 years or older with relapsed or refractory multiple myeloma, previous autologous stem-cell transplant or persistent disease after more than four cycles of induction therapy, and Eastern Cooperative Oncology Group performance status of 0-2, regardless of previous BCMA-targeted therapy. To assess the effect of the GSI on BCMA surface density on bone marrow plasma cells, participants received GSI during a pretreatment run-in, consisting of three doses administered 48 h apart. BCMA CAR T cells were infused at doses of 50 × 106 CAR T cells, 150 × 106 CAR T cells, 300 × 106 CAR T cells, and 450 × 106 CAR T cells (total cell dose), in combination with the 25 mg crenigacestat dosed three times a week for up to nine doses. The primary endpoints were the safety and recommended phase 2 dose of BCMA CAR T cells in combination with crenigacestat, an oral GSI. This study is registered with ClinicalTrials.gov, NCT03502577, and has met accrual goals.

    FINDINGS: 19 participants were enrolled between June 1, 2018, and March 1, 2021, and one participant did not proceed with BCMA CAR T-cell infusion. 18 participants (eight [44%] men and ten [56%] women) with multiple myeloma received treatment between July 11, 2018, and April 14, 2021, with a median follow up of 36 months (95% CI 26 to not reached). The most common non-haematological adverse events of grade 3 or higher were hypophosphataemia in 14 (78%) participants, fatigue in 11 (61%), hypocalcaemia in nine (50%), and hypertension in seven (39%). Two deaths reported outside of the 28-day adverse event collection window were related to treatment. Participants were treated at doses up to 450 × 106 CAR+ cells, and the recommended phase 2 dose was not reached.

    INTERPRETATIONS: Combining a GSI with BCMA CAR T cells appears to be well tolerated, and crenigacestat increases target antigen density. Deep responses were observed among heavily pretreated participants with multiple myeloma who had previously received BCMA-targeted therapy and those who were naive to previous BCMA-targeted therapy. Further study of GSIs given with BCMA-targeted therapeutics is warranted in clinical trials.

    FUNDING: Juno Therapeutics-a Bristol Myers Squibb company and the National Institutes of Health.

    Matched MeSH terms: Immunotherapy, Adoptive/adverse effects
  13. Pan SY, Chia YC, Yee HR, Fang Cheng AY, Anjum CE, Kenisi Y, et al.
    Future Sci OA, 2020 Oct 29;7(2):FSO648.
    PMID: 33437514 DOI: 10.2144/fsoa-2020-0142
    The immune system is a complex network of specialized cells and organs that recognises and reacts against foreign pathogens while remaining unresponsive to host tissues. This ability to self-tolerate is known as immunological tolerance. Autoimmune disease occurs when the immune system fails to differentiate between self and non-self antigens and releases autoantibodies to attack our own cells. Anti-idiotypic (anti-ID) antibodies are important in maintaining a balanced idiotypic regulatory network by neutralising and inhibiting the secretion of autoantibodies. Recently, anti-ID antibodies have been advanced as an alternative form of immunotherapy as they can specifically target autoantibodies, cause less toxicity and side effects, and could provide long-lasting immunity. This review article discusses the immunomodulatory potential of anti-ID antibodies for the treatment of autoimmune diseases.
    Matched MeSH terms: Immunotherapy
  14. Hussain Z, Rahim MA, Jan N, Shah H, Rawas-Qalaji M, Khan S, et al.
    J Control Release, 2021 07 10;335:130-157.
    PMID: 34015400 DOI: 10.1016/j.jconrel.2021.05.018
    Despite enormous advancements in the field of oncology, the innocuous and effectual treatment of various types of malignancies remained a colossal challenge. The conventional modalities such as chemotherapy, radiotherapy, and surgery have been remained the most viable options for cancer treatment, but lacking of target-specificity, optimum safety and efficacy, and pharmacokinetic disparities are their impliable shortcomings. Though, in recent decades, numerous encroachments in the field of onco-targeted drug delivery have been adapted but several limitations (i.e., short plasma half-life, early clearance by reticuloendothelial system, immunogenicity, inadequate internalization and localization into the onco-tissues, chemoresistance, and deficient therapeutic efficacy) associated with these onco-targeted delivery systems limits their clinical viability. To abolish the aforementioned inadequacies, a promising approach has been emerged in which stealthing of synthetic nanocarriers has been attained by cloaking them into the natural cell membranes. These biomimetic nanomedicines not only retain characteristics features of the synthetic nanocarriers but also inherit the cell-membrane intrinsic functionalities. In this review, we have summarized preparation methods, mechanism of cloaking, and pharmaceutical and therapeutic superiority of cell-membrane camouflaged nanomedicines in improving the bio-imaging and immunotherapy against various types of malignancies. These pliable adaptations have revolutionized the current drug delivery strategies by optimizing the plasma circulation time, improving the permeation into the cancerous microenvironment, escaping the immune evasion and rapid clearance from the systemic circulation, minimizing the immunogenicity, and enabling the cell-cell communication via cell membrane markers of biomimetic nanomedicines. Moreover, the preeminence of cell-membrane cloaked nanomedicines in improving the bio-imaging and theranostic applications, alone or in combination with phototherapy or radiotherapy, have also been pondered.
    Matched MeSH terms: Immunotherapy
  15. Chin DS, Lim CSY, Nordin F, Arifin N, Jun TG
    Curr Pharm Biotechnol, 2022;23(4):552-578.
    PMID: 34414871 DOI: 10.2174/1389201022666210820093608
    BACKGROUND: Natural killer (NK) cells have potent effector functions that can be further improved for therapeutic purposes through antibody-dependent cell-mediated cytotoxicity (ADCC). Specific killing of virus-infected cells and cancer cells is modulated through target specific antibodies that subsequently recruit NK cells for ADCC. NK cells produce cytokines similar to activated T cells, but is less persistent as NK cells have short-lived responses. These features benefit the development of customisable and more individualised cell-based therapies.

    OBJECTIVES: Preclinical studies with NK cells were promising and several clinical studies are ongoing to investigate their use in antibody therapies. However, more reliable ADCC assays are required for evaluating NK cell activity to optimise therapeutic antibodies. The therapeutic potential of NK cell therapy could then be improved by harnessing ADCC.

    METHODS: This review discusses recent studies on key components of NK cell-mediated ADCC, current clinical trials involving NK cells, ADCC assay developments and various techniques to improve ADCC.

    RESULTS: Improvements can be made to NK-mediated ADCC through modifications of antibodies, effector cells and target antigens. Different aspects of antibodies were studied extensively, including modifying glycosylation patterns, novel production methods, combination regiments, bispecific antibodies, and conjugated antibodies. Modification of NK cells and tumour surface markers could improve ADCC of even treatment-resistant cancer cells. Additives such as cytokines and other immunomodulatory agents can further augment ADCC to supplement NK cell-based therapies.

    CONCLUSION: ADCC improvements could be incorporated with current biological techniques such as adoptive transfer of NK cells and chimeric antigen receptor (CAR) NK cells, to improve the outcome of NK cell-based therapy and pave the way for future immunotherapies.

    Matched MeSH terms: Immunotherapy
  16. Chan AML, Cheah JM, Lokanathan Y, Ng MH, Law JX
    Int J Mol Sci, 2023 Feb 16;24(4).
    PMID: 36835438 DOI: 10.3390/ijms24044026
    Cancer is the second leading contributor to global deaths caused by non-communicable diseases. The cancer cells are known to interact with the surrounding non-cancerous cells, including the immune cells and stromal cells, within the tumor microenvironment (TME) to modulate the tumor progression, metastasis and resistance. Currently, chemotherapy and radiotherapy are the standard treatments for cancers. However, these treatments cause a significant number of side effects, as they damage both the cancer cells and the actively dividing normal cells indiscriminately. Hence, a new generation of immunotherapy using natural killer (NK) cells, cytotoxic CD8+ T-lymphocytes or macrophages was developed to achieve tumor-specific targeting and circumvent the adverse effects. However, the progression of cell-based immunotherapy is hindered by the combined action of TME and TD-EVs, which render the cancer cells less immunogenic. Recently, there has been an increase in interest in using immune cell derivatives to treat cancers. One of the highly potential immune cell derivatives is the NK cell-derived EVs (NK-EVs). As an acellular product, NK-EVs are resistant to the influence of TME and TD-EVs, and can be designed for "off-the-shelf" use. In this systematic review, we examine the safety and efficacy of NK-EVs to treat various cancers in vitro and in vivo.
    Matched MeSH terms: Immunotherapy
  17. Zaman R, Cai X, Shubhra QTH
    Trends Mol Med, 2023 Dec;29(12):976-978.
    PMID: 37863716 DOI: 10.1016/j.molmed.2023.10.003
    Yang et al. recently demonstrated the high potential of liquid metal microspheres (LM MSs) in cancer therapy. By amplifying the effects of magnetic hyperthermia and embolization, LM MSs not only target primary tumors, but also potentiate immune defenses. This dual-action approach effectively curtails distant tumor growth, marking a pivotal advancement in cancer immunotherapy.
    Matched MeSH terms: Immunotherapy
  18. Gong Y, Kang J, Wang M, Hayati F, Syed Abdul Rahim SS, Poh Wah Goh L
    Hum Vaccin Immunother, 2024 Dec 31;20(1):2312599.
    PMID: 38356280 DOI: 10.1080/21645515.2024.2312599
    An increasing body of research indicates that immunotherapy has demonstrated substantial effectiveness in the realm of metastatic colorectal cancer(mCRC), especially among patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) (dMMR/MSI-H mCRC). This study constitutes the inaugural bibliometric and visual analysis of immunotherapy related to mCRC during the last decade. Between 2013 and the conclusion of 2022, we screened 306 articles from Web of Science and subjected them to analysis using CiteSpace and VOSviewer. The United States stood out as the primary contributor in this area, representing 33.33% of the publications, with China following closely at 24.51%. The most prolific institution has the lowest average citation rate. Sorbonne University were the most highly cited institutions. Notably, Frontiers In Oncology published the largest quantity of articles. Andre, Thierry, and Overman, Michael J. were prominent authors known for their prolific output and the high citation rates of their work. The focus areas in this field encompass "tumor microenvironment," "liver metastasis," "tumor-associated macrophages," "combination therapy" and "gut microbiota." Some keywords offer promise as potential biomarkers for evaluating the effectiveness of immunotherapeutic interventions.
    Matched MeSH terms: Immunotherapy
  19. Lim SS, Othman RY
    Korean J Parasitol, 2014 Dec;52(6):581-93.
    PMID: 25548409 DOI: 10.3347/kjp.2014.52.6.581
    Toxoplasmosis is an opportunistic infection caused by the protozoan parasite Toxoplasma gondii. T. gondii is widespread globally and causes severe diseases in individuals with impaired immune defences as well as congenitally infected infants. The high prevalence rate in some parts of the world such as South America and Africa, coupled with the current drug treatments that trigger hypersensitivity reactions, makes the development of immunotherapeutics intervention a highly important research priority. Immunotherapeutics strategies could either be a vaccine which would confer a pre-emptive immunity to infection, or passive immunization in cases of disease recrudescence or recurrent clinical diseases. As the severity of clinical manifestations is often greater in developing nations, the development of well-tolerated and safe immunotherapeutics becomes not only a scientific pursuit, but a humanitarian enterprise. In the last few years, much progress has been made in vaccine research with new antigens, novel adjuvants, and innovative vaccine delivery such as nanoparticles and antigen encapsulations. A literature search over the past 5 years showed that most experimental studies were focused on DNA vaccination at 52%, followed by protein vaccination which formed 36% of the studies, live attenuated vaccinations at 9%, and heterologous vaccination at 3%; while there were few on passive immunization. Recent progress in studies on vaccination, passive immunization, as well as insights gained from these immunotherapeutics is highlighted in this review.
    Matched MeSH terms: Immunotherapy/methods*; Immunotherapy/trends
  20. Bhaskaran M, Devegowda VG, Gupta VK, Shivachar A, Bhosale RR, Arunachalam M, et al.
    ACS Chem Neurosci, 2020 10 07;11(19):2962-2977.
    PMID: 32945654 DOI: 10.1021/acschemneuro.0c00555
    Glioblastoma multiforme (GBM), a standout among the most dangerous class of central nervous system (CNS) cancer, is most common and is an aggressive malignant brain tumor in adults. In spite of developments in modality therapy, it remains mostly incurable. Consequently, the need for novel systems, strategies, or therapeutic approaches for enhancing the assortment of active agents meant for GBM becomes an important criterion. Currently, cancer research focuses mainly on improving the treatment of GBM via diverse novel drug delivery systems. The treatment options at diagnosis are multimodal and include radiation therapy. Moreover, significant advances in understanding the molecular pathology of GBM and associated cell signaling pathways have opened opportunities for new therapies. Innovative treatment such as immunotherapy also gives hope for enhanced survival. The objective of this work was to collect and report the recent research findings to manage GBM. The present review includes existing novel drug delivery systems and therapies intended for managing GBM. Reported novel drug delivery systems and diverse therapies seem to be precise, secure, and relatively effective, which could lead to a new track for the obliteration of GBM.
    Matched MeSH terms: Immunotherapy
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links