Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Abdullah S, Tan CT
    Handb Clin Neurol, 2014;123:663-70.
    PMID: 25015510 DOI: 10.1016/B978-0-444-53488-0.00032-8
    Matched MeSH terms: Brain/virology
  2. Cheo SW, Wong HJ, Ng EK, Low QJ, Chia YK
    Hong Kong Med J, 2021 02;27(1):55-57.
    PMID: 33568560 DOI: 10.12809/hkmj208509
    Matched MeSH terms: Brain/virology
  3. Lee KE, Umapathi T, Tan CB, Tjia HT, Chua TS, Oh HM, et al.
    Ann Neurol, 1999 Sep;46(3):428-32.
    PMID: 10482278 DOI: 10.1002/1531-8249(199909)46:3<428::AID-ANA23>3.0.C
    A novel Hendra-like paramyxovirus named Nipah virus (NiV) was the cause of an outbreak among workers from one abattoir who had contact with pigs. Two patients had only respiratory symptoms, while 9 patients had encephalitis, 7 of whom are described in this report. Neurological involvement was diverse and multifocal, including aseptic meningitis, diffuse encephalitis, and focal brainstem involvement. Cerebellar signs were relatively common. Magnetic resonance imaging scans of the brain showed scattered lesions. IgM antibodies against Hendra virus (HeV) were present in the serum of all patients. Two patients recovered completely. Five had residual deficits 8 weeks later.
    Matched MeSH terms: Brain/virology
  4. Lum LC, Wong KT, Lam SK, Chua KB, Goh AY
    Lancet, 2000 Jan 08;355(9198):146-7.
    PMID: 10675193
    Matched MeSH terms: Brain/virology
  5. Lum LC, Wong KT, Lam SK, Chua KB, Goh AY
    Lancet, 1998 Oct 24;352(9137):1391.
    PMID: 9802304
    Matched MeSH terms: Brain/virology*
  6. Ong KC, Wong KT
    Brain Pathol, 2015 Sep;25(5):614-24.
    PMID: 26276025 DOI: 10.1111/bpa.12279
    Enterovirus A71 (EV-A71) belongs to the species group A in the Enterovirus genus within the Picornaviridae family. EV-A71 usually causes self-limiting hand, foot and mouth disease or herpangina but rarely causes severe neurological complications such as acute flaccid paralysis and encephalomyelitis. The pathology and neuropathogenesis of these neurological syndromes is beginning to be understood. EV-A71 neurotropism for motor neurons in the spinal cord and brainstem, and other neurons, is mainly responsible for central nervous system damage. This review on the general aspects, recent developments and advances of EV-A71 infection will focus on neuropathogenesis and its implications on other neurotropic enteroviruses, such as poliovirus and the newly emergent Enterovirus D68. With the imminent eradication of poliovirus, EV-A71 is likely to replace it as an important neurotropic enterovirus of worldwide importance.
    Matched MeSH terms: Brain/virology*
  7. Ismail AA, Mahboob T, Samudi Raju C, Sekaran SD
    Trop Biomed, 2019 Dec 01;36(4):888-897.
    PMID: 33597462
    Zika virus (ZIKV) is a mosquito-borne Flaviviruses. ZIKV is known to cause birth defect in pregnant women, especially microcephaly in the fetus. Hence, more study is required to understand the infection of Zika virus towards human brain microvascular endothelial cells (MECs). In this study, brain MECs were infected with ZIKV at MOI of 1 and 5 in vitro. The changes in barrier function and membrane permeability of ZIKV-infected brain MECs were determined using electric cell-substrate impedance sensing (ECIS) system followed by gene expression of ZIKV-infected brain MECs at 24 hours post infection using one-color gene expression microarray. The ECIS results demonstrated that ZIKV infection enhances vascular leakage by increasing cell membrane permeability via alteration of brain MECs barrier function. This was further supported by high expression of proinflammatory cytokine genes (lnc-IL6-2, TNFAIP1 and TNFAIP6), adhesion molecules (CERCAM and ESAM) and growth factor (FIGF). Overall, findings of this study revealed that ZIKV infection could alter the barrier function of brain MECs by altering adhesion molecules and inflammatory response.
    Matched MeSH terms: Brain/virology
  8. Wei Chiam C, Fun Chan Y, Chai Ong K, Thong Wong K, Sam IC
    J Gen Virol, 2015 Nov;96(11):3243-3254.
    PMID: 26276497 DOI: 10.1099/jgv.0.000263
    Chikungunya virus (CHIKV), an alphavirus of the family Togaviridae, causes fever, polyarthritis and rash. There are three genotypes: West African, Asian and East/Central/South African (ECSA). The latter two genotypes have caused global outbreaks in recent years. Recent ECSA CHIKV outbreaks have been associated with severe neurological disease, but it is not known if different CHIKV genotypes are associated with different neurovirulence. In this study, the neurovirulence of Asian (MY/06/37348) and ECSA (MY/08/065) strains of CHIKV isolated in Malaysia were compared. Intracerebral inoculation of either virus into suckling mice was followed by virus titration, histopathology and gene expression analysis of the harvested brains. Both strains of CHIKV replicated similarly, yet mice infected with MY/06/37348 showed higher mortality. Histopathology findings showed that both CHIKV strains spread within the brain (where CHIKV antigen was localized to astrocytes and neurons) and beyond to skeletal muscle. In MY/06/37348-infected mice, apoptosis, which is associated with neurovirulence in alphaviruses, was observed earlier in brains. Comparison of gene expression showed that a pro-apoptotic gene (eIF2αK2) was upregulated at higher levels in MY/06/37348-infected mice, while genes involved in anti-apoptosis (BIRC3), antiviral responses and central nervous system protection (including CD40, IL-10RA, MyD88 and PYCARD) were upregulated more highly in MY/08/065-infected mice. In conclusion, the higher mortality observed following MY/06/37348 infection in mice is due not to higher viral replication in the brain, but to differentially expressed genes involved in host immune responses. These findings may help to identify therapeutic strategies and biomarkers for neurological CHIKV infections.
    Matched MeSH terms: Brain/virology*
  9. Goldsmith CS, Whistler T, Rollin PE, Ksiazek TG, Rota PA, Bellini WJ, et al.
    Virus Res, 2003 Mar;92(1):89-98.
    PMID: 12606080
    Nipah virus, which was first recognized during an outbreak of encephalitis with high mortality in Peninsular Malaysia during 1998-1999, is most closely related to Hendra virus, another emergent paramyxovirus first recognized in Australia in 1994. We have studied the morphologic features of Nipah virus in infected Vero E6 cells and human brain by using standard and immunogold electron microscopy and ultrastructural in situ hybridization. Nipah virions are enveloped particles composed of a tangle of filamentous nucleocapsids and measured as large as 1900 nm in diameter. The nucleocapsids measured up to 1.67 microm in length and had the herringbone structure characteristic for paramyxoviruses. Cellular infection was associated with multinucleation, intracytoplasmic nucleocapsid inclusions (NCIs), and long cytoplasmic tubules. Previously undescribed for other members of the family Paramyxoviridae, infected cells also contained an inclusion formed of reticular structures. Ultrastructural ISH studies suggest these inclusions play an important role in the transcription process.
    Matched MeSH terms: Brain/virology
  10. Prow NA, Setoh YX, Biron RM, Sester DP, Kim KS, Hobson-Peters J, et al.
    J Virol, 2014 Sep 1;88(17):9947-62.
    PMID: 24942584 DOI: 10.1128/JVI.01304-14
    The mosquito-borne West Nile virus (WNV) is responsible for outbreaks of viral encephalitis in humans, horses, and birds, with particularly virulent strains causing recent outbreaks of disease in eastern Europe, the Middle East, North America, and Australia. Previous studies have phylogenetically separated WNV strains into two main genetic lineages (I and II) containing virulent strains associated with neurological disease. Several WNV-like strains clustering outside these lineages have been identified and form an additional five proposed lineages. However, little is known about whether these strains have the potential to induce disease. In a comparative analysis with the highly virulent lineage I American strain (WNVNY99), the low-pathogenicity lineage II strain (B956), a benign Australian strain, Kunjin (WNVKUN), the African WNV-like Koutango virus (WNVKOU), and a WNV-like isolate from Sarawak, Malaysia (WNVSarawak), were assessed for neuroinvasive properties in a murine model and for their replication kinetics in vitro. While WNVNY99 replicated to the highest levels in vitro, in vivo mouse challenge revealed that WNVKOU was more virulent, with a shorter time to onset of neurological disease and higher morbidity. Histological analysis of WNVKOU- and WNVNY99-infected brain and spinal cords demonstrated more prominent meningoencephalitis and the presence of viral antigen in WNVKOU-infected mice. Enhanced virulence of WNVKOU also was associated with poor viral clearance in the periphery (sera and spleen), a skewed innate immune response, and poor neutralizing antibody development. These data demonstrate, for the first time, potent neuroinvasive and neurovirulent properties of a WNV-like virus outside lineages I and II.
    Matched MeSH terms: Brain/virology
  11. Yoneda M, Georges-Courbot MC, Ikeda F, Ishii M, Nagata N, Jacquot F, et al.
    PLoS One, 2013;8(3):e58414.
    PMID: 23516477 DOI: 10.1371/journal.pone.0058414
    Nipah virus (NiV) is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G). Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi). Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans.
    Matched MeSH terms: Brain/virology
  12. Ransangan J, Manin BO
    Vet Microbiol, 2010 Sep 28;145(1-2):153-7.
    PMID: 20427132 DOI: 10.1016/j.vetmic.2010.03.016
    Culture of Asian seabass, Lates calcarifer (Bloch) is a popular aquaculture activity in Malaysia. This fish is in high demand and fetches a good price in the local market. The seed for this fish is commercially produced by induced spawning in hatcheries. However, the seed supply is affected by frequent mass mortality of larvae aged between 15 and 60 dph. The clinical signs shown by the affected larvae include lethargy, loss of appetite, uncoordinated swimming, unusual spiral movement pattern and dark coloration. Histological examination of brain and eye of the affected specimens revealed extensive cell vacuolation in larvae aged 15-25 dph. Partial nucleotide sequence of the nervous necrosis virus coat protein gene of the affected larvae showed 94.0-96.1% homology to the nucleotide sequences of coat protein gene from nervous necrosis virus isolated from other countries in the Southeast Asia and Australia. This study provides scientific evidence based on molecular technique that many episodes of mass mortality in seabass larvae in Sabah is associated with the viral nervous necrosis. Because no effective treatment has been reported for this infection, stringent biosecurity measures must be adopted for exclusion of the pathogen from the culture system.
    Matched MeSH terms: Brain/virology
  13. Zhang YZ, Xiong CL, Lin XD, Zhou DJ, Jiang RJ, Xiao QY, et al.
    Infect Genet Evol, 2009 Jan;9(1):87-96.
    PMID: 19041424 DOI: 10.1016/j.meegid.2008.10.014
    There have been three major rabies epidemics in China since the 1950s. To gain more insights into the molecular epidemiology of rabies viruses (RVs) for the third (the current) epidemic, we isolated RV from dogs and humans in major endemic areas, and characterized these isolates genetically by sequencing the entire glycoprotein (G) gene and the G-L non-coding region. These sequences were also compared phylogenetically with RVs isolated in China during previous epidemics and those around the world. Comparison of the entire G genes among the Chinese isolates revealed up to 21.8% divergence at the nucleotide level and 17.8% at the amino acid level. The available Chinese isolates could be divided into two distinct clades, each of which could be further divided into six lineages. Viruses in clade I include most of the Chinese viruses as well as viruses from southeast Asian countries including Indonesia, Malaysia, the Philippines, Thailand, and Vietnam. The viruses in the other clade were found infrequently in China, but are closely related to viruses distributed worldwide among terrestrial animals. Interestingly, most of the viruses isolated during the past 10 years belong to lineage A viruses within clade I whereas most of the viruses isolated before 1996 belong to other lineages within clades I and II. Our results indicated that lineages A viruses have been predominant during the past 10 years and thus are largely responsible for the third and the current epidemic in China. Our results also suggested that the Chinese RV isolates in clade I share a common recent ancestor with those circulating in southeast Asia.
    Matched MeSH terms: Brain/virology
  14. Ong KC, Badmanathan M, Devi S, Leong KL, Cardosa MJ, Wong KT
    J. Neuropathol. Exp. Neurol., 2008 Jun;67(6):532-42.
    PMID: 18520772 DOI: 10.1097/NEN.0b013e31817713e7
    We describe a model of Enterovirus 71 encephalomyelitis in 2-week-old mice that shares many features with the human central nervous system (CNS) disease. Mice were infected via oral and parenteral routes with a murine-adapted virus strain originally from a fatal human case. The mice succumbed to infection after 2 to 5 days. Vacuolated and normal-appearing CNS neurons showed viral RNA and antigens and virions by in situ hybridization, immunohistochemistry, and electron microscopy; inflammation was minimal. The most numerous infected neurons were in anterior horns, motor trigeminal nuclei, and brainstem reticular formation; fewer neurons in the red nucleus, lateral cerebellar nucleus, other cranial nerve nuclei, motor cortex, hypothalamus, and thalamus were infected. Other CNS regions, dorsal root, and autonomic ganglia were spared. Intramuscular-inoculated mice killed 24 to 36 hours postinfection had viral RNA and antigens in ipsilateral lumbar anterior horn cells and adjacent axons. Upper cord motor neurons, brainstem, and contralateral motor cortex neurons were infected from 48-72 hours. Viral RNA and antigens were abundant in skeletal muscle and adjacent tissues but not in other organs. The distinct, stereotypic viral distribution in this model suggests that the virus enters the CNS via peripheral motor nerves after skeletal muscle infection, and spread within the CNS involves motor and other neural pathways. This model may be useful for further studies on pathogenesis and for testing therapies.
    Matched MeSH terms: Brain/virology
  15. Chan YF, AbuBakar S
    Virol J, 2005;2:74.
    PMID: 16122396
    At least three different EV-71 subgenotypes were identified from an outbreak in Malaysia in 1998. The subgenotypes C2 and B4 were associated with the severe and fatal infections, whereas the B3 virus was associated with mild to subclinical infections. The B3 virus genome sequences had >= 85% similarity at the 3' end to CV-A16. This offers opportunities to examine if there are characteristic similarities and differences in virulence between CV-A16, EV-71 B3 and EV-71 B4 and to determine if the presence of the CV-A16-liked genes in EV-71 B3 would also confer the virus with a CV-A16-liked neurovirulence in mice model infection.
    Matched MeSH terms: Brain/virology
  16. Gibbs WW
    Sci. Am., 1999 Aug;281(2):80-7.
    PMID: 10443039
    Matched MeSH terms: Brain/virology
  17. Adams SC, Broom AK, Sammels LM, Hartnett AC, Howard MJ, Coelen RJ, et al.
    Virology, 1995 Jan 10;206(1):49-56.
    PMID: 7530394
    Previous studies have found Kunjin (KUN) virus isolates from within Australia to be genetically homogenous and that the envelope protein of the type strain (MRM61C) was unglycosylated and lacked a potential glycosylation site. We investigated the extent of antigenic variation between KUN virus isolates from Australia and Sarawak using an immunoperoxidase assay and a panel of six monoclonal antibodies. The glycosylation status of the E protein of each virus was also determined by N glycosidase F (PNGase F) digestion and limited sequence analysis. The results showed that KUN viruses isolated within Australia oscillated between three antigenic types defined by two epitopes whose expression was influenced by passage history and host cell type. In contrast an isolate from Sarawak formed a stable antigenic type that was not influenced by passage history and was distinct from all Australian isolates. PNGase F digestions of KUN isolates indicated that 19 of the 33 viruses possessed a glycosylated E protein. Nucleotide sequence of the 5' third of the E gene of selected KUN isolates revealed that a single base change in PNGase F sensitive strains changed the tripeptide N-Y-F (amino acids 154-156 of the published sequence) to the potential glycosylation site N-Y-S. Further analysis revealed that passage history also had a significant influence on glycosylation.
    Matched MeSH terms: Brain/virology
  18. Nguyen AK, Nguyen DV, Ngo GC, Nguyen TT, Inoue S, Yamada A, et al.
    Jpn J Infect Dis, 2011;64(5):391-6.
    PMID: 21937820
    This study was aimed at determining the molecular epidemiology of rabies virus (RABV) circulating in Vietnam. Intra vitam samples (saliva and cerebrospinal fluid) were collected from 31 patients who were believed to have rabies and were admitted to hospitals in northern provinces of Vietnam. Brain samples were collected from 176 sick or furious rabid dogs from all over the country. The human and canine samples were subjected to reverse transcription-polymerase chain reaction analysis. The findings showed that 23 patients tested positive for RABV. Interestingly, 5 rabies patients did not have any history of dog or cat bites, but they had an experience of butchering dogs or cats, or consuming their meat. RABV was also detected in 2 of the 100 sick dogs from slaughterhouses. Molecular epidemiological analysis of 27 RABV strains showed that these viruses could be classified into two groups. The RABVs classified into Group 1 were distributed throughout Vietnam and had sequence similarity with the strains from China, Thailand, Malaysia, and the Philippines. However, the RABVs classified into Group 2 were only found in the northern provinces of Vietnam and showed high sequence similarity with the strain from southern China. This finding suggested the recent influx of Group 2 RABVs between Vietnam and China across the border. Although the incidence of rabies due to circulating RABVs in slaughterhouses is less common than that due to dog bite, the national program for rabies control and prevention in Vietnam should include monitoring of the health of dogs meant for human consumption and vaccination for workers at dog slaughterhouses. Further, monitoring of and research on the circulating RABVs in dog markets may help to determine the cause of rabies and control the spread of rabies in slaughterhouses in Vietnam.
    Matched MeSH terms: Brain/virology
  19. Camalxaman SN, Zeenathul NA, Quah YW, Loh HS, Zuridah H, Hani H, et al.
    In Vitro Cell Dev Biol Anim, 2013 Mar;49(3):238-44.
    PMID: 23435855 DOI: 10.1007/s11626-012-9553-5
    Endothelial cells have been implicated as key cells in promoting the pathogenesis and spread of cytomegalovirus (CMV) infection. This study describes the isolation and culture of rat brain endothelial cells (RBEC) and further evaluates the infectious potential of a Malaysian rat CMV (RCMV ALL-03) in these cultured cells. Brain tissues were mechanically fragmented, exposed to enzymatic digestion, purified by gradient density centrifugation, and cultured in vitro. Morphological characteristics and expression of von Willebrand factor (factor VIII-related antigen) verified the cells were of endothelial origin. RBEC were found to be permissive to the virus by cytopathic effects with detectable plaques formed within 7 d of infection. This was confirmed by electron microscopy examination which proved the existence of the viral particles in the infected cells. The susceptibility of the virus to these target cells under the experimental conditions described in this report provides a platform for developing a cell-culture-based experimental model for studies of RCMV pathogenesis and allows stimulation of further studies on host cell responses imposed by congenital viral infections.
    Matched MeSH terms: Brain/virology
  20. Dietmann A, Putzer D, Beer R, Helbok R, Pfausler B, Nordin AJ, et al.
    Int J Infect Dis, 2016 Oct;51:73-77.
    PMID: 27418580 DOI: 10.1016/j.ijid.2016.06.022
    BACKGROUND: Tick borne encephalitis (TBE) is an acute meningoencephalitis with or without myelitis caused by an RNA virus from the flavivirus family transmitted by Ixodes spp ticks. The neurotropic TBE virus infects preferentially large neurons in basal ganglia, anterior horns, medulla oblongata, Purkinje cells and thalamus. Brain metabolic changes related to radiologic and clinical findings have not been described so far.

    METHODS: Here we describe the clinical course of 10 consecutive TBE patients with outcome assessment at discharge and after 12 month using a modified Rankin Scale. Patients underwent cerebral MRI after confirmation of diagnosis and before discharge. (18)F-FDG PET/CT scans were performed within day 5 to day 14 after TBE diagnosis. Extended analysis of coagulation parameters by thrombelastometry (ROTEM® InTEM, ExTEM, FibTEM) was performed every other day after confirmation of TBE diagnosis up to day 10 after hospital admission or discharge.

    RESULTS: All patients presented with a meningoencephalitic course of disease. Cerebral MRI scans showed unspecific findings at predilection areas in 3 patients. (18)F-FDG PET/CT showed increased glucose utilization in one patient and decreased (18)F-FDG uptake in seven patients. Changes in coagulation measured by standard parameters and thrombelastometry were not found in any of the patients.

    DISCUSSION: Glucose hypometabolism was present in 7 out of 10 TBE patients reflecting neuronal dysfunction in predilection areas of TBE virus infiltration responsible for development of clinical signs and symptoms.

    Matched MeSH terms: Brain/virology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links