Zika virus (ZIKV) has re-emerged to cause explosive epidemics in the Pacific and Latin America, and appears to be associated with severe neurological complications including microcephaly in babies. ZIKV is transmitted to humans by Aedes mosquitoes, principally Ae. aegypti, and there is historical evidence of ZIKV circulation in Southeast Asia. It is therefore clear that Malaysia is at risk of similar outbreaks. Local and international guidelines are available for surveillance, diagnostics, and management of exposed and infected individuals. ZIKV is the latest arbovirus to have spread globally beyond its initial restricted niche, and is unlikely to be the last. Innovative new methods for surveillance and control of vectors are needed to target mosquito-borne diseases as a whole.
In 2018, the World Health Organization identified the Zika virus (ZIKV) as a pathogen that should be prioritized for public health research due to its epidemic potential. In this study, whole-genome sequencing (WGS) of travel-acquired ZIKV infections was used to examine the limitations of phylogenetic analysis. WGS and phylogenetic analysis were performed to investigate geographic clustering of samples from five Canadians with travel-acquired ZIKV infections and to assess the limitations of phylogenetic analysis of ZIKV sequences using a phylogenetic cluster approach. Genomic variability of ZIKV samples was assessed and for context, compared with hepatitis C virus (HCV) samples. Phylogenetic analysis confirmed the suspected region of ZIKV infection for one of five samples and one sample failed to cluster with sequences from its suspected country of infection. Travel-acquired ZIKV samples depicted low genomic variability relative to HCV samples. A floating patristic distance threshold classified all pre-2000 ZIKV sequences into separate clusters, while only Cambodian, Peruvian, Malaysian, and South Korean sequences were similarly classifiable. While phylogenetic analysis of ZIKV data can identify the broad geographical region of ZIKV infection, ZIKV's low genomic variability is likely to limit precise interpretations of phylogenetic analysis of the origins of travel-related cases.
Zika virus (ZIKV) is an emerging mosquito-borne virus that was first isolated from a sentinel rhesus monkey in the Zika Forest in Uganda in 1947. In Asia, the virus was isolated in Malaysia from Aedes aegypti mosquitoes in 1966, and the first human infections were reported in 1977 in Central Java, Indonesia. In this review, all reported cases of ZIKV infection in Asia as of September 1, 2016 are summarized and some of the hypotheses that could currently explain the apparently low incidence of Zika cases in Asia are explored.
Two confirmed human cases of Zika virus (ZIKV) were reported in the district of Miri, Sarawak, in 2016. Following that, a mosquito-based ZIKV surveillance study was conducted within 200-m radius from the case houses. Mosquito surveillance was conducted using five different methods, that is, biogents sentinel mosquito (BG) sentinel trap, modified sticky ovitrap, resting catch, larval surveillance, and conventional ovitrap. A total of 527 and 390 mosquito samples were obtained from the case houses in two localities, namely, Kampung Lopeng and Taman Shang Ri La, Miri, Sarawak, respectively. All mosquitoes collected were identified, which consisted of 11 species. Aedes albopictus, both the adult and larval stages, was the dominant species. Resting catch method obtained the highest number of adult mosquitoes (67%), whereas ovitrap showed the highest catch for larval mosquitoes (84%). Zika virus was detected in both adults and larvae of Ae. albopictus together with adults of Culex gelidus, and Culex quinquefasciatus using the real-time reverse transcriptase polymerase chain reaction (PCR) technique. It was noteworthy that Ae. albopictus positive with ZIKV were caught and obtained from four types of collection method. By contrast, Cx. gelidus and Culex quinquefasciatus adults collected from sticky ovitraps were also found positive with ZIKV. This study reveals vital information regarding the potential vectors of ZIKV and the possibility of transovarian transmission of the virus in Malaysia. These findings will be essentials for vector control program managers to devise preparedness and contingency plans of prevention and control of the arboviral disease.
Human arboviral diseases transmitted by Aedes aegypti such as dengue, Zika, chikungunya and yellow fever remain global public health threats to date. Of these diseases, dengue fever is particularly prevalent in Southeast Asia. Relentless vector control efforts are performed to curtail disease transmissions through which pyrethroid insecticides are broadly used as the first line of defense to control Ae. aegypti, especially in the course of disease outbreaks. Here, we compile the largest contemporary database for susceptibility profiles and underlying mechanisms involved in Ae. aegypti resistant to pyrethroids in Southeast Asia. The extensive use of pyrethroids inevitably elicit different levels of resistance to numerous populations despite the presence of geographical isolation. The most common mechanisms of pyrethroid resistance that have been identified in Ae. aegypti includes mutations in the voltage sensitive sodium channel gene (Vssc gene) and metabolic-mediated insecticide resistance. Aedes aegypti develops resistance to pyrethroids by acquisition of one or several amino acid substitution(s) in this Vssc gene. Enzymes involved in metabolic-mediated detoxification (i.e. monooxygenases, glutathione-S-transferases and esterases) have been reported to be related to pyrethroid resistance but many specific contributory enzymes are not completely studied. An inadequate amount of data from some countries indicates an urgent need for further study to fill the knowledge gaps. Perspectives and future research needs are also discussed.
The Zika virus outbreaks highlight the growing importance need for a reliable, specific and rapid diagnostic device to detect Zika virus, as it is often recognized as a mild disease without being identified. Many Zika virus infection cases have been misdiagnosed or underreported because of the non-specific clinical presentation. The aim of this review was to provide a critical and comprehensive overview of the published peer-reviewed evidence related to clinical presentations, various diagnostic methods and modes of transmission of Zika virus infection, as well as potential therapeutic targets to combat microcephaly. Zika virus is mainly transmitted through bites from Aedes aegypti mosquito. It can also be transmitted through blood, perinatally and sexually. Pregnant women are advised to postpone or avoid travelling to areas where active Zika virus transmission is reported, as this infection is directly linked to foetal microcephaly. Due to the high prevalence of Guillain-Barre syndrome and microcephaly in the endemic area, it is vital to confirm the diagnosis of Zika virus. Zika virus infection had been declared as a public health emergency and of international concern by the World Health Organisation. Governments and agencies should play an important role in terms of investing time and resources to fundamentally understand this infection so that a vaccine can be developed besides raising awareness.
The Spondweni serogroup of viruses (Flaviviridae, Flavivirus) is comprised of Spondweni virus (SPONV) and Zika virus (ZIKV), which are mosquito-borne viruses capable of eliciting human disease. Numerous cases of ZIKV sexual transmission in humans have been documented following the emergence of the Asian genotype in the Americas. The African ZIKV genotype virus was previously implicated in the first reported case of ZIKV sexual transmission. Reports of SPONV infection in humans have been associated with non-specific febrile illness, but no association with sexual transmission has been reported. In order to assess the relative efficiency of sexual transmission of different ZIKV strains and the potential capacity of SPONV to be sexually transmitted, viral loads in the male reproductive tract and in seminal fluids were assessed in interferon α/β and -γ receptor deficient (AG129) mice. Male mice were inoculated subcutaneously with Asian genotype ZIKV strains PRVABC59 (Puerto Rico, 2015), FSS13025 (Cambodia, 2010), or P6-740 (Malaysia, 1966); African genotype ZIKV strain DakAr41524 (Senegal, 1984); or SPONV strain SAAr94 (South Africa, 1955). Infectious virus was detected in 60-72% of ejaculates collected from AG129 mice inoculated with ZIKV strains. In contrast, only 4% of ejaculates from SPONV-inoculated AG129 males were found to contain infectious virus, despite viral titers in the testes that were comparable to those of ZIKV-inoculated mice. Based on these results, future studies should be undertaken to assess the role of viral genetic determinants and host tropism that dictate the differential sexual transmission potential of ZIKV and SPONV.
Zika virus (ZIKV) has emerged since 2013 as a significant global human health threat following outbreaks in the Pacific Islands and rapid spread throughout South and Central America. Severe congenital and neurological sequelae have been linked to ZIKV infections. Assessing the ability of common mosquito species to transmit ZIKV and characterizing variation in mosquito transmission of different ZIKV strains is important for estimating regional outbreak potential and for prioritizing local mosquito control strategies for Aedes and Culex species. In this study, we evaluated the laboratory vector competence of Aedes aegypti, Culex quinquefasciatus, and Culex tarsalis that originated in areas of California where ZIKV cases in travelers since 2015 were frequent. We compared infection, dissemination, and transmission rates by measuring ZIKV RNA levels in cohorts of mosquitoes that ingested blood meals from type I interferon-deficient mice infected with either a Puerto Rican ZIKV strain from 2015 (PR15), a Brazilian ZIKV strain from 2015 (BR15), or an ancestral Asian-lineage Malaysian ZIKV strain from 1966 (MA66). With PR15, Cx. quinquefasciatus was refractory to infection (0%, N = 42) and Cx. tarsalis was infected at 4% (N = 46). No ZIKV RNA was detected in saliva from either Culex species 14 or 21 days post feeding (dpf). In contrast, Ae. aegypti developed infection rates of 85% (PR15; N = 46), 90% (BR15; N = 20), and 81% (MA66; N = 85) 14 or 15 dpf. Although MA66-infected Ae. aegypti showed higher levels of ZIKV RNA in mosquito bodies and legs, transmission rates were not significantly different across virus strains (P = 0.13, Fisher's exact test). To confirm infectivity and measure the transmitted ZIKV dose, we enumerated infectious ZIKV in Ae. aegypti saliva using Vero cell plaque assays. The expectorated plaque forming units PFU varied by viral strain: MA66-infected expectorated 13±4 PFU (mean±SE, N = 13) compared to 29±6 PFU for PR15-infected (N = 13) and 35±8 PFU for BR15-infected (N = 6; ANOVA, df = 2, F = 3.8, P = 0.035). These laboratory vector competence results support an emerging consensus that Cx. tarsalis and Cx. quinquefasciatus are not vectors of ZIKV. These results also indicate that Ae. aegypti from California are efficient laboratory vectors of ancestral and contemporary Asian lineage ZIKV.