Displaying all 19 publications

Abstract:
Sort:
  1. Schwartz RA
    Dermatol Ther, 2019 Jun 07.
    PMID: 31172646 DOI: 10.1111/dth.12990
    The tenth edition of this extraordinary dermatologic congress was held in the Crowne Plaza Hotel in the magnificent Kuwait City on April 23-25, 2019, thanks to the patronage of His Excellency, the Honorable Dr. Basel H Al-Sabah, Minister of Health, Kuwait. It was organized and shepherded by the renowned Chairman of the Dermatology Council in Kuwait, Professor Nawaf Al-Mutairi, FRCP Edin This article is protected by copyright. All rights reserved.
    Matched MeSH terms: Xylenes
  2. Altındaş C, Sher F, Smječanin N, Lima EC, Rashid T, Hai IU, et al.
    Environ Res, 2023 Jan 01;216(Pt 1):114479.
    PMID: 36208784 DOI: 10.1016/j.envres.2022.114479
    A feasible and cost-effective process for utilization of toluene and heavy reformate is the conversion of its streams by transalkylation reaction into highly valuable xylenes. The process is usually catalysed by zeolites and the challenges to overcome in transalkylation of heavy reformate with toluene over zeolites are their selectivity, activity, long-term stability, and coke formation. Current study aimed to investigate xylenes production by transalkylation reaction on the synthesized metal-doped zeolite catalysts and to characterize prepared catalysts by FTIR, SEM, EDS and BET analysis. Toluene/heavy reformate modelled mixture was utilized as a feed. For the first time Beta and ZSM-5 catalysts with 10% (w/w) cerium and 0.1% (w/w) palladium were synthesized by calcination and wet impregnation method. Catalytic tests were performed by continuous-flow gas/solid catalytic fixed bed reactor at atmospheric pressure, 2 h-1 and 5 h-1 and 250, 300, 350 and 400 °C. Experimental results revealed that the highest heavy reformate conversion (98.94%) and toluene conversion (9.82%) were obtained over H-ZSM-5, at 400 °C and 2 h-1 WHSV. The highest xylene selectivity (11.53) was achieved over H-ZSM-5, and the highest p-xylene percentage (62.40%), using Ce-ZSM-5 catalyst. ZSM-5 catalysts showed more resistance to coke deposition than Beta zeolites. The present study delivers novel approach and catalysts, which have immense potential for developing safer and inexpensive transalkylation process in industry.
    Matched MeSH terms: Xylenes
  3. Leong LH, Kandaiya S, Seng NB
    Australas Phys Eng Sci Med, 2007 Jun;30(2):135-40.
    PMID: 17682403
    The oxidation of ferrous to ferric ions due to ionizing radiation has been used for chemical dosimetry since 1927. The introduction of metal indicator dye xylenol orange (XO) sensitises the measurement of ferric ion yield. A ferrous sulphate- agarose- xylenol orange (FAX) gel was prepared and the gel then exposed to dose ranging from 0.2 to 10 Gy using various high energy photon and electron beams from a linear accelerator. Some general characteristics of FAX such as energy dependence, optical density (OD)-dose relationship, reproducibility and auto-oxidation of ferrous ions were analysed. The radiation yield G of the gel was calculated for gels prepared in oxygen and in air and the values were 46.3 +/- 2.1 and 40.9 +/- 1.4 Fe3+ per 100 eV for photons respectively. However for stock gel which was kept for 5 days pre-irradiation the G value decreased to 36.6 +/- 1.1. The gel shows linearity in OD-dose relationship, energy independence and reproducibility over the dose range investigated. Auto-oxidation of ferrous ions resulted in optical density changes of less than 1.5% per day.
    Matched MeSH terms: Xylenes/chemistry*
  4. Rajan ST, Narasimhan M, Rao KB, Jacob TE
    J Oral Maxillofac Pathol, 2019 9 14;23(2):303.
    PMID: 31516245 DOI: 10.4103/jomfp.JOMFP_297_18
    Background: Xylene is one of the most commonly used solvents in industrial and medical technologies. Several health hazards of xylene have been documented in literature. Workers in certain forces appear to have the greatest potential for exposure to high concentrations of xylene - histopathology technicians and painters are two such groups. This study was undertaken with the aim to determine the level of xylene exposure and the various systemic health effects among these groups.

    Methodology: The study was performed by analyzing the urine samples of the participants for methylhippuric acid, the established biomarker of xylene with the aid of high-performance liquid chromatography.

    Results and Conclusion: The work hours per week of the occupationally exposed participants were statistically analyzed with that of the excretory values of the metabolites of xylene, and the P value was found to be highly significant. Various side effects of xylene including respiratory, dermatological, neurological and gastrointestinal symptoms were observed among the study groups.

    Matched MeSH terms: Xylenes
  5. Lee, S.W., Tan, S.T., Che Ab Aziz, Z.A.
    Ann Dent, 2005;12(1):-.
    MyJurnal
    Thirty extracted mandibular premolars were randomly divided into 3 groups. Canals were cleaned, obturated and the teeth incubated. Guttapercha removal was performed using: Hedström files with xylene (Group 1); ProFile® alone (Group 2) and combination of both (Group 3). Time required to remove the gutta-percha was recorded. Postoperative radiographs were taken. Specimens were split longitudinally and photographed. Amount of gutta-percha left at coronal, middle and apical thirds was calculated by computer (QWIN software) and the photographs were also evaluated visually by two endodontists. Results showed that the combined technique was fastest in removing gutta-percha. Radiographically, more residual was left in Group 2. Although computer analysis also showed more residual was left in Group 2, they were in a small percentage and there were no significant differences (P>0.05, SPSS paired-samples T test) among groups. Although there were significant differences between the two evaluators in their scoring, both generally agreed (Kappa’s analysis= 0.64) there was more guttapercha residual in Group 2 compared to Group 3 in the apical thirds. Although the differences in efficacy of guttapercha removal among these techniques were not significant, the use of ProFile® increased the speed of the procedure. The combined technique showed the most superior efficacy in gutta-percha removal.
    Matched MeSH terms: Xylenes
  6. Park YK, Jung SC, Jung HY, Foong SY, Lam SS, Kim SC
    Environ Sci Pollut Res Int, 2021 May;28(19):24552-24557.
    PMID: 32533488 DOI: 10.1007/s11356-020-09575-6
    Oxidation of o-xylene was performed using alkaline battery-based catalyst doped with platinum to investigate the properties and activities. O-xylene was selected as the model of volatile organic compound (VOC) in this work. Physicochemical properties of the selected catalysts were characterized by FE/TEM (field emission transmission electron microscopy), BET (Brunauer-Emmett-Teller) analysis, XRD (X-ray powder diffraction), SEM/EDX (scanning electron microscopy/energy dispersive X-ray spectroscopy), and H2-TPR (hydrogen temperature programmed reduction). Major elements of the spent alkaline battery-based catalyst treated with sulfuric acid solution [SAB (400) catalyst] were manganese, zinc, iron, oxygen, carbon, chlorine, aluminum, sodium, silicon, and potassium. Increasing the doping amount of platinum on SAB (400) catalyst from 0.1 to 1 wt% increased particle size of platinum and lowered the temperature of TPR (TTP) for SAB (400) catalyst. Better redox properties were achieved with an increase in the o-xylene conversion according to the doping amount of platinum. When GHSV (gas hourly space velocity) was 40,000 h-1, o-xylene was oxidized completely over SAB (400) catalyst and 1.0 wt% Pt/SAB(400) catalyst at temperatures of 400 °C and 280 °C, respectively.
    Matched MeSH terms: Xylenes
  7. Umar MF, Rafatullah M, Abbas SZ, Mohamad Ibrahim MN, Ismail N
    PMID: 33917378 DOI: 10.3390/ijerph18073811
    Anthropogenic activities are largely responsible for the vast amounts of pollutants such as polycyclic aromatic hydrocarbons, cyanides, phenols, metal derivatives, sulphides, and other chemicals in wastewater. The excess benzene, toluene and xylene (BTX) can cause severe toxicity to living organisms in wastewater. A novel approach to mitigate this problem is the benthic microbial fuel cell (BMFC) setup to produce renewable energy and bio-remediate wastewater aromatic hydrocarbons. Several mechanisms of electrogens have been utilized for the bioremediation of BTX through BMFCs. In the future, BMFCs may be significant for chemical and petrochemical industry wastewater treatment. The distinct factors are considered to evaluate the performance of BMFCs, such as pollutant removal efficiency, power density, and current density, which are discussed by using operating parameters such as, pH, temperature and internal resistance. To further upgrade the BMFC technology, this review summarizes prototype electrode materials, the bioremediation of BTX, and their applications.
    Matched MeSH terms: Xylenes
  8. Latif MT, Abd Hamid HH, Ahamad F, Khan MF, Mohd Nadzir MS, Othman M, et al.
    Chemosphere, 2019 Dec;237:124451.
    PMID: 31394440 DOI: 10.1016/j.chemosphere.2019.124451
    This study aims to determine the composition of BTEX (benzene, toluene, ethylbenzene and xylene) and assess the risk to health at different sites in Malaysia. Continuous monitoring of BTEX in Kuala Lumpur City Centre, Kuala Terengganu, Kota Kinabalu and Fraser Hill were conducted using Online Gas Chromatograph. For comparison, BTEX at selected hotspot locations were determined by active sampling method using sorbent tubes and Thermal Desorption Gas Chromatography Mass Spectrometry. The hazard quotient (HQ) for non-carcinogenic and the life-time cancer risk (LTCR) of BTEX were calculated using the United States Environmental Protection Agency (USEPA) health risk assessment (HRA) methods. The results showed that the highest total BTEX concentrations using continuous monitoring were recorded in the Kuala Lumpur City Centre (49.56 ± 23.71 μg/m3). Toluene was the most dominant among the BTEX compounds. The average concentrations of benzene ranged from 0.69 ± 0.45 μg/m3 to 6.20 ± 3.51 μg/m3. Measurements using active sampling showed that BTEX concentrations dominated at the roadside (193.11 ± 114.57 μg/m3) in comparison to petrol station (73.08 ± 30.41 μg/m3), petrochemical industry (32.10 ± 13.13 μg/m3) and airport (25.30 ± 6.17 μg/m3). Strong correlations among BTEX compounds (p<0.01, r>0.7) at Kuala Lumpur City Centre showed that BTEX compounds originated from similar sources. The values of HQ at all stations were <1 indicating the non-carcinogenic risk are negligible and do not pose threats to human health. The LTCR value based on benzene inhalation (1.59 × 10-5) at Kuala Lumpur City Centre were between 1 × 10-4 and 1 × 10-5, representing a probable carcinogenic risk.
    Matched MeSH terms: Xylenes/analysis*; Xylenes/toxicity
  9. Iqbal MA, Haque RA, Ahamed SA, Jafari SF, Khadeer Ahamed MB, Abdul Majid AM
    Med Chem, 2015;11(5):473-81.
    PMID: 25553509
    Azolium (imidazolium and benzimidazolium) salts are known as stable precursors for the synthesis of Metal-N-Heterocyclic Carbene (M-NHC) complexes. Recently, some reports have been compiled indicating that benzimidazolium salts have anticarcinogenic properties. The current research is the further investigation of this phenomenon. Three ortho-xylene linked bis-benzimidazolium salts (1-3) with octyl, nonyl and decyl terminal chain lengths have been synthesized. Each of the compounds was characterized using FT-IR and NMR spectroscopic techniques. The molecular geometries of two of the salts (1-2) have been established using X-ray crystallographic technique. The compounds were tested for their cytotoxic properties against three cancerous cell lines namely, human colon cancer (HCT 116), human colorectal adenocarcinoma (HT- 29) and human breast adenocarcinoma (MCF-7). Mouse embryonic fibroblast (3T3-L1) was used as the model cell line of normal cells. The compounds showed selective anti-proliferative activities against the colorectal carcinoma cells. For HCT 116 and HT-29 cells, the IC50 values ranged 0.9-2.6 µM and 4.0-10.0 µM, respectively. The salts 1 and 3 displayed moderate cytotoxicity against the breast cancer (MCF-7) cells with IC50 58.2 and 13.3 µM, respectively. However, the salt 2 produced strong cytotoxicity against MCF-7 cells with IC50 4.4 µM. Interestingly, the compounds demonstrated poor cytotoxic effects towards the normal cells (3T3-L1) as the IC50 was found to be as high as 48.0 µM. Salts 2 and 3 demonstrated more pronounced anti-proliferative effect than the standard drugs used (5-Flourouracil and Tamoxifen).
    Matched MeSH terms: Xylenes/chemical synthesis; Xylenes/toxicity*; Xylenes/chemistry*
  10. Umar MF, Rafatullah M, Abbas SZ, Ibrahim MNM, Ismail N
    J Hazard Mater, 2021 10 05;419:126469.
    PMID: 34192640 DOI: 10.1016/j.jhazmat.2021.126469
    Xylene, a recalcitrant compound present in wastewater from activities of petrochemical and chemical industries causes chronic problems for living organisms and the environment. Xylene contaminated wastewater may be biodegraded through a benthic microbial fuel cell (BMFC) as seen in this study. Xylene was oxidized into intermediate 3-methyl benzoic acid and entirely converted into non-toxic carbon dioxide. The highest voltage of the BMFC reactor was generated at 410 mV between 23 and 90 days when cell potential was 1 kΩ. The reactor achieved a maximum power density of about 63 mW/m2, and a current of 0.4 mA which was optimized from variable resistance (20 Ω - 1 kΩ). However, the maximum biodegradation efficiency of the BMFC was at 87.8%. The cyclic voltammetry curve helped to determine that the specific capacitance was 0.124 F/g after 30 days of the BMFC operation. Furthermore, the fitting equivalent circuit was observed with the help of Nyquist plot for calculating overall internal resistance of 65.82 Ω on 30th day and 124.5 Ω on 80th day. Staphylococcus edaphicus and Staphylococcus sparophiticus were identified by 16S rRNA sequencing as the dominant species in the control and BMFC electrode, presumably associated with xylene biodegradation.
    Matched MeSH terms: Xylenes
  11. Syariena Arshad, Salleh M, Yahaya M
    Sains Malaysiana, 2008;37:233-237.
    Titanium dioxide (TiO2), porphyrin and TiO2 coated with dye porphyrin thin films were prepared on Quartz Crystal Microbalance (QCM) using sol-gel dip coating method and were tested for sensing of volatile organic compounds (VOCs). The porphyrin used was 5,10,15,20-tetraphenyl-21H,23H-porphine manganese (III) chloride (MnTPPCl). The sensing sensitivity was based on the change in the fundamental frequency of the QCM upon exposure towards six vapor samples, namely ethanol, acetone, cyclohexane, toluene, o-xylene and 2-propanol. It was found that all the thin films were sensitive towards all the vapors. However, the TiO2 coated MnTPPCl thin film exhibit the most sensitive and has good selectivity property.
    Matched MeSH terms: Xylenes
  12. Hamid HHA, Latif MT, Uning R, Nadzir MSM, Khan MF, Ta GC, et al.
    Environ Monit Assess, 2020 May 08;192(6):342.
    PMID: 32382809 DOI: 10.1007/s10661-020-08311-4
    Benzene, toluene, ethylbenzene and xylenes (BTEX) are well known hazardous volatile organic compounds (VOCs) due to their human health risks and photochemical effects. The main objective of this study was to estimate BTEX levels and evaluate interspecies ratios and ozone formation potentials (OFP) in the ambient air of urban Kuala Lumpur (KL) based on a passive sampling method with a Tenax® GR adsorbent tube. Analysis of BTEX was performed using a thermal desorption (TD)-gas chromatography mass spectrometer (GCMS). OFP was calculated based on the Maximum Incremental Reactivity (MIR). Results from this study showed that the average total BTEX during the sampling period was 66.06 ± 2.39 μg/m3. Toluene (27.70 ± 0.97 μg/m3) was the highest, followed by m,p-xylene (13.87 ± 0.36 μg/m3), o-xylene (11.49 ± 0.39 μg/m3), ethylbenzene (8.46 ± 0.34 μg/m3) and benzene (3.86 ± 0.31 μg/m3). The ratio of toluene to benzene (T:B) is > 7, suggesting that VOCs in the Kuala Lumpur urban environment are influenced by vehicle emissions and other anthropogenic sources. The average of ozone formation potential (OFP) value from BTEX was 278.42 ± 74.64 μg/m3 with toluene and xylenes being the major contributors to OFP. This study also indicated that the average of benzene concentration in KL was slightly lower than the European Union (EU)-recommended health limit value for benzene of 5 μg/m3 annual exposure.
    Matched MeSH terms: Xylenes
  13. Law AT, Button DK
    Appl Environ Microbiol, 1986 Mar;51(3):469-76.
    PMID: 16347006
    Trace (microgram liter) quantities of either toluene or benzene injected into an amino-acid-limited continuous culture of Pseudomonas sp. strain T2 were utilized immediately with affinities of 2.6 and 6.8 liters g of cells h, respectively, and yielded large amounts of organic products, carbon dioxide, and cells. The immediate utilization of hydrocarbons by hydrocarbon-deprived organisms helps to establish the nutritional value of nonpolar substrates in the environment. The observation of small Michaelis constants for toluene transport led to tests of metabolic competition between hydrocarbons; however, competitive inhibition of toluene metabolism was not found for benzene, naphthalene, xylene, dodecane, or amino acids. Benzene and terpenes were inhibitory at milligram liter concentrations. Toluene was metabolized by a strongly inducible system when compared with benzene. The capacity of toluene to effect larger affinity values increased with exposure time and concentration. The kinetics of induction suggested saturation phenomena, resulting in an induction constant, K(ind), of 96 mug of toluene liter. Maximal induction of amino-acid-grown cells required about 80 h, with the affinity reaching 317 liters g of cells h.
    Matched MeSH terms: Xylenes
  14. Tawfiq MF, Aroua MK, Sulaiman NM
    J Environ Sci (China), 2015 Jul 1;33:239-44.
    PMID: 26141898 DOI: 10.1016/j.jes.2015.01.015
    Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass.
    Matched MeSH terms: Xylenes/chemistry*
  15. Idris SA', Hanafiah MM, Khan MF, Hamid HHA
    Chemosphere, 2020 Sep;255:126932.
    PMID: 32402880 DOI: 10.1016/j.chemosphere.2020.126932
    The aim of the present study was to investigate the potential sources of heavy metals in fine air particles (PM2.5) and benzene, toluene, ethylbenzene, and isomeric xylenes (BTEX) in gas phase indoor air. PM2.5 samples were collected using a low volume sampler. BTEX samples were collected using passive sampling onto sorbent tubes and analyzed using gas chromatography-mass spectrometry (GC-MS). For the lower and upper floors of the evaluated building, the concentrations of PM2.5 were 96.4 ± 2.70 μg/m3 and 80.2 ± 3.11 μg/m3, respectively. The compositions of heavy metals in PM2.5 were predominated by iron (Fe), zinc (Zn), and aluminum (Al) with concentration of 500 ± 50.07 ng/m3, 466 ± 77.38 ng/m3, and 422 ± 147.38 ng/m3. A principal component analysis (PCA) showed that the main sources of BTEX were originated from vehicle emissions and exacerbate because of temperature variations. Hazard quotient results for BTEX showed that the compounds were below acceptable limits and thus did not possess potential carcinogenic risks. However, a measured output of lifetime cancer probability revealed that benzene and ethylbenzene posed definite carcinogenic risks. Pollutants that originated from heavy traffic next to the sampling site contributed to the indoor pollution.
    Matched MeSH terms: Xylenes/analysis
  16. Rohman, A., Sugeng, R., Che Man, Y.B.
    MyJurnal
    The present study was carried out to characterize red fruit (Pandanus conoideus Lam) oil (RFO) in term of FTIR spectra, fatty acid composition, and volatile compounds. FTIR spectrum of RFO was slightly
    different from other common vegetable oils and animal fats, in which in the frequency range of 1750 – 1700 cm-1, RFO appear two bands. The main fatty acid composition of RFO is oleic acid accounting for 68.80% followed by linoleic acid with the concentration of 8.49%. The main volatile compounds of RFO as determined using gas chromatography coupled with mass spectrometry (GC-MS) and headspace analyser are 1,3-dimethylbenzene (27.46%), N-glycyl- L-alanine (17.36%), trichloromethane (15.22%), and ethane (11.43%).
    Matched MeSH terms: Xylenes
  17. Haron MJ, Jahangirian H, Silong S, Yusof NA, Kassim A, Rafiee-Moghaddam R, et al.
    Int J Mol Sci, 2012;13(2):2148-59.
    PMID: 22408444 DOI: 10.3390/ijms13022148
    Liquid-liquid iron(III) extraction was investigated using benzyl fatty hydroxamic acids (BFHAs) and methyl fatty hydroxamic acids (MFHAs) as chelating agents through the formation of iron(III) methyl fatty hydroxamate (Fe-MFHs) or iron(III) benzyl fatty hydroxamate (Fe-BFHs) in the organic phase. The results obtained under optimized conditions, showed that the chelating agents in hexane extract iron(III) at pH 1.9 were realized effectively with a high percentage of extraction (97.2% and 98.1% for MFHAs and BFHAs, respectively). The presence of a large amount of Mg(II), Ni(II), Al(III), Mn(II) and Co(II) ions did affect the iron(III) extraction. Finally stripping studies for recovering iron(III) from organic phase (Fe-MFHs or Fe-BFHs dissolved in hexane) were carried out at various concentrations of HCl, HNO(3) and H(2)SO(4). The results showed that the desired acid for recovery of iron(III) was 5 M HCl and quantitative recovery of iron(III) was achieved from Fe(III)-MFHs and Fe(III)-BFHs solutions in hexane containing 5 mg/L of Fe(III).
    Matched MeSH terms: Xylenes/chemistry
  18. Rahman RN, Baharum SN, Salleh AB, Basri M
    J Microbiol, 2006 Dec;44(6):583-90.
    PMID: 17205035
    In this study, an organic solvent tolerant bacterial strain was isolated. This strain was identified as Pseudomonas sp. strain S5, and was shown to degrade BTEX (Benzene, Toluene, Ethyl-Benzene, and Xylene). Strain S5 generates an organic solvent-tolerant lipase in the late logarithmic phase of growth. Maximum lipase production was exhibited when peptone was utilized as the sole nitrogen source. Addition of any of the selected carbon sources to the medium resulted in a significant reduction of enzyme production. Lower lipase generation was noted when an inorganic nitrogen source was used as the sole nitrogen source. This bacterium hydrolyzed all tested triglycerides and the highest levels of production were observed when olive oil was used as a natural triglyceride. Basal medium containing Tween 60 enhanced lipase production to the most significant degree. The absence of magnesium ions (Mg2+) in the basal medium was also shown to stimulate lipase production. Meanwhile, an alkaline earth metal ion, Na+, was found to stimulate the production of S5 lipase.
    Matched MeSH terms: Xylenes/metabolism; Xylenes/pharmacology
  19. Choo, Sulin, Chew, Boon How, Amilia Afzan Mohd. Jamil, Chew, Shu Yih, Hadiza Umar Meleh, Leslie Than Thian Lung
    MyJurnal
    Lactobacilli are well-documented probiotics that exert health benefits on their host. They exhibit characteristics that make them potential alternative treatments to address the antimicrobial resistance conundrum and diseases. Their mechanism of action varies with strain and species. Five lactobacilli strains previously isolated from the anogenital region were subjected to several assessments highlighted in the FAO/WHO document, ‘Guidelines for the Evaluation of Probiotics in Food’ to determine its suitability as potential probiotics. Methods: The five lactobacilli strains were subcultured onto Man de Rogosa agar (MRS). Their ability to auto- and co-aggregate was determined spectrophotometrically. Simultaneously, the cell surface hydrophobic properties of these strains towards xylene and toluene were evaluated using the microbial adhesion to hydrocarbon (MATH) test. The lactobacilli strains were also tested for their ability to withstand acid, bile and spermicide to determine their level of tolerance. Results: Lact. reuteri 29A, L. delbrueckii 45E and L. reuteri 29B exhibited the highest degree of auto- and co-aggregation properties. These lactobacilli strains also demonstrated high cell surface hydrophobicity, with the exception of L. delbrueckii 45E. Further tests to evaluate the isolated lactobacilli tolerance identified L. reuteri 29B as the most tolerant strain towards low pH (pH 2.5 for 4 h), high bile concentration (0.5% for 4 h) and high spermicides concentration (up to 10%). Conclusion: Out of the five lactobacilli strains which possessed high antimicrobial activities, L. reuteri 29B portrayed the best probiotic qualities with good auto- and co-aggregation abilities and high tolerance against acid, bile and spermicide.
    Matched MeSH terms: Xylenes
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links