Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Samadi M, Zainal Abidin Z, Yoshida H, Yunus R, Awang Biak DR
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858782 DOI: 10.3390/molecules25173872
    A method that delivers a high yield and excellent quality of essential oil, which retains most of its value-added compounds, and undergoes least change after the extraction process, is greatly sought after. Although chemical free methods are acceptable, they call for an extensive processing time, while the yield and quality from these methods are often disappointing. This work utilizes subcritical water technology to address these issues. In this undertaking, essential oil was extracted from Aquilaria malaccensis wood by way of subcritical conditions, and characterized through gas chromatography/mass spectroscopy (GC/MS). Optimization through response surface methodology revealed temperature to be the most critical factor for the extraction process, while the optimum conditions for temperature, sample-to-solvent ratio, and time for subcritical water extraction was revealed as 225 °C, 0.2 gr/mL, and 17 min, respectively. The subcritical water extraction technique involves two simultaneous processes, which are based on good fitting to the two-site kinetic and second order model. In comparison to the hydrodistillation method, GC/MS results indicated that the quality of A. malaccensis' wood oils, derived through the subcritical water technique, are of significantly better quality, while containing many constructive value-added compounds, such as furfural and guaiacol, which are useful for the production of pesticides and medicines. Pore size, functional groups, and morphology analysis revealed the occurrence of substantial damage to the samples, which facilitated an improved extraction of bio-products. In comparison to conventional methods, the use of the subcritical method not only involves a shorter processing time, but also delivers a higher oil yield and quality.
    Matched MeSH terms: Wood/chemistry*
  2. Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, et al.
    Carbohydr Polym, 2015 Jan 22;115:785-803.
    PMID: 25439962 DOI: 10.1016/j.carbpol.2014.08.047
    The requirement for high quality pulps which are widely used in paper industries has increased the demand for pulp refining (beating) process. Pulp refining is a promising approach to improve the pulp quality by changing the fiber characteristics. The diversity of research on the effect of refining on fiber properties which is due to the different pulp sources, pulp consistency and refining equipment has interested us to provide a review on the studies over the last decade. In this article, the influence of pulp refining on structural properties i.e., fibrillations, fine formation, fiber length, fiber curl, crystallinity and distribution of surface chemical compositions is reviewed. The effect of pulp refining on electrokinetic properties of fiber e.g., surface and total charges of pulps is discussed. In addition, an overview of different refining theories, refiners as well as some tests for assessing the pulp refining is presented.
    Matched MeSH terms: Wood/chemistry*
  3. Yang Y, Zhang Z, Zhang L, Song F, Ren Y, Zhang X, et al.
    Sci Total Environ, 2023 Aug 01;884:163741.
    PMID: 37120025 DOI: 10.1016/j.scitotenv.2023.163741
    Wood-based panels provide efficient alternatives to materials such as plastics derived from traditional petroleum sources and thereby help to mitigate greenhouse gas emissions. Unfortunately, using indoor manufactured panel products also results in significant emissions of volatile organic compounds including olefins, aromatic and ester compounds, which negatively affect human health. This paper highlights recent developments and notable achievements in the field of indoor hazardous air treatment technologies to guide future research toward environmentally friendly and economically feasible directions that may have a significant impact on the improvement of human settlements. Summarizing and synthesizing the principles, advantages, and limitations of different technologies can assist policymakers and engineers in identifying the most appropriate technology for a particular air pollution control program based on criteria such as cost-effectiveness, efficiency, and environmental impact. In addition, insights into the development of indoor air pollution control technologies are provided and potential areas for innovation, improvement of existing technologies, and development of new technologies are identified. Finally, the authors also hope that this sub-paper will raise public awareness of indoor air pollution issues and promote a better understanding of the importance of indoor air pollution control technologies for public health, environmental protection, and sustainable development.
    Matched MeSH terms: Wood/chemistry
  4. Liao JJ, Latif NHA, Trache D, Brosse N, Hussin MH
    Int J Biol Macromol, 2020 Nov 01;162:985-1024.
    PMID: 32592780 DOI: 10.1016/j.ijbiomac.2020.06.168
    The most critical issues faced by the world nowadays is to provide the sustainability of consumption for energy and natural resources. Lignin is said to be one of the alternative new discoveries best-suited lignocellulosic biomass due to its low cost, sufficient availability and environmentally safe. The valuable properties exhibited by lignin can give broader applications usage such as in composite materials, wood industries, polymer composite industries, pharmaceutical and corrosion inhibitor industries. Many biomass wastes resources, isolation processes and treatments are undergoing development in order to enhance the producing new lignin-based materials on an industrial scale. Therefore, this review discussed on the current knowledge on the structure and chemistry of isolation of lignin from different sources using various common methods, its characterization, properties and its applications.
    Matched MeSH terms: Wood/chemistry*
  5. Arellano G, Medina NG, Tan S, Mohamad M, Davies SJ
    New Phytol, 2019 01;221(1):169-179.
    PMID: 30067290 DOI: 10.1111/nph.15381
    What causes individual tree death in tropical forests remains a major gap in our understanding of the biology of tropical trees and leads to significant uncertainty in predicting global carbon cycle dynamics. We measured individual characteristics (diameter at breast height, wood density, growth rate, crown illumination and crown form) and environmental conditions (soil fertility and habitat suitability) for 26 425 trees ≥ 10 cm diameter at breast height belonging to 416 species in a 52-ha plot in Lambir Hills National Park, Malaysia. We used structural equation models to investigate the relationships among the different factors and tree mortality. Crown form (a proxy for mechanical damage and other stresses) and prior growth were the two most important factors related to mortality. The effect of all variables on mortality (except habitat suitability) was substantially greater than expected by chance. Tree death is the result of interactions between factors, including direct and indirect effects. Crown form/damage and prior growth mediated most of the effect of tree size, wood density, fertility and habitat suitability on mortality. Large-scale assessment of crown form or status may result in improved prediction of individual tree death at the landscape scale.
    Matched MeSH terms: Wood/chemistry
  6. Noh AAM, Ahmad AH, Salim H
    Sci Rep, 2023 Feb 17;13(1):2854.
    PMID: 36808172 DOI: 10.1038/s41598-023-29499-8
    Studies were conducted on the potential use of cholecalciferol as an alternative to anticoagulant rodenticides to control common rat pest in oil palm plantations, i.e., wood rats, Rattus tiomanicus, and the secondary poisoning impact of cholecalciferol on barn owls, Tyto javanica javanica. The laboratory efficacy of cholecalciferol (0.075% a.i.) was compared with commonly used first-generation anticoagulant rodenticides (FGARs): chlorophacinone (0.005% a.i) and warfarin (0.05% a.i). The 6-day wild wood rat laboratory feeding trial showed cholecalciferol baits had the highest mortality rate at 71.39%. Similarly, the FGAR chlorophacinone recorded a mortality rate of 74.20%, while warfarin baits recorded the lowest mortality rate at 46.07%. The days-to-death of rat samples was in range of 6-8 days. The highest daily consumption of bait by rat samples was recorded for warfarin at 5.85 ± 1.34 g per day while the lowest was recorded in rat samples fed cholecalciferol, i.e., 3.03 ± 0.17 g per day. Chlorophacinone-treated and control rat samples recorded consumption of about 5 g per day. A secondary poisoning assessment on barn owls in captivity fed with cholecalciferol-poisoned rats showed after 7 days of alternate feeding, the barn owls appeared to remain healthy. All the barn owls fed with cholecalciferol-poisoned rats survived the 7-day alternate feeding test and throughout the study, up to 6 months after exposure. All the barn owls did not show any abnormal behavior or physical change. The barn owls were observed to be as healthy as the barn owls from the control group throughout the study.
    Matched MeSH terms: Wood/chemistry
  7. Shakhreet BZ, Bauk S, Tajuddin AA, Shukri A
    Radiat Prot Dosimetry, 2009 Jul;135(1):47-53.
    PMID: 19482883 DOI: 10.1093/rpd/ncp096
    The mass attenuation coefficients (mu/rho) of Rhizophora spp. were determined for photons in the energy range of 15.77-25.27 keV. This was carried out by studying the attenuation of X-ray fluorescent photons from zirconium, molybdenum, palladium, silver, indium and tin targets. The results were compared with theoretical values for average breast tissues in young-age, middle-age and old-age groups calculated using photon cross section database (XCOM), the well-known code for calculating attenuation coefficients and interaction cross-sections. The measured mass attenuation coefficients were found to be very close to the calculated XCOM values in breasts of young-age group.
    Matched MeSH terms: Wood/chemistry*
  8. Jasmani L, Adnan S
    Carbohydr Polym, 2017 Apr 01;161:166-171.
    PMID: 28189225 DOI: 10.1016/j.carbpol.2016.12.061
    Acacia mangium, a fast growing tree is widely planted in Malaysia. Converting Acacia wood into nanocellulose could create new value added products for forest-based industry. Nanocrystalline cellulose (NCC) was prepared from Acacia mangium wood pulp via 64wt% sulfuric acid hydrolysis. Prior to acid hydrolysis, Acacia mangium was subjected to pulping followed by bleaching in order to remove non-cellulosic fragments. Acid hydrolysis was carried out on bleached pulp to produce the needle-like NCC with 79% crystallinity and aspect ratio of 26. The resulting NCC was mixed with PVA as a reinforcement material. Incorporation of 2% NCC improved the tensile of the NCC-PVA film by 30%.
    Matched MeSH terms: Wood/chemistry
  9. Kadir R, Awang K, Khamaruddin Z, Soit Z
    An Acad Bras Cienc, 2015 Apr-Jun;87(2):743-51.
    PMID: 26131633 DOI: 10.1590/0001-3765201520140041
    Wood extractives from heartwood of Callophylum inophyllum (bintangor) were obtained by shaker method and analyzed for their constituents by gas chromatography-mass spectrometry (GC-MS). Ten compounds were identified by ethanol (EtOH) solvents, fourteen by methanol (MeOH) and only nine by petroleum ether (PETETHR). Major compounds were contributed by monoterpenes (75.11%, 53.75%) when extracted with EtOH and PETETHR solvents. The anti-termitic assay of the wood extracts was also investigated against Coptotermes curvignathus. The level of concentration for anti-termite activity may be an indication of the dose application of the wood extracts for new development of termiticide.
    Matched MeSH terms: Wood/chemistry
  10. Hazwan Hussin M, Samad NA, Latif NHA, Rozuli NA, Yusoff SB, Gambier F, et al.
    Int J Biol Macromol, 2018 Jul 01;113:1266-1272.
    PMID: 29548919 DOI: 10.1016/j.ijbiomac.2018.03.048
    Lignocellulosic materials can significantly contribute to the development of eco-friendly wood adhesives. In this work, glyoxal-phenolic resins for plywood were prepared using organosolv lignin, which was isolated from black liquor recovered from organosolv pulping of oil palm fronds (OPF) and considered to be an alternative to phenol. Glyoxal, which is a dialdehyde obtained from several natural resources, was used as substitute for formaldehyde. The structure of organosolv lignin and the resins were characterized by FTIR and NMR, and for thermal stability by TGA and DSC. The resins were further studied for their viscosity, pH, solids content and gel times. The resins performance as wood adhesive was further established from mechanical test in terms of tensile strength and modulus of elasticity (MOE) to obtain the optimum ratios of organosolv lignin, which replaces phenol in organosolv lignin phenol glyoxal (OLPG) resins. The adhesive composition having 50% (w/w) of phenol substituted by organosolv lignin, termed as 50% OLPG showed highest adhesive strength compared to phenol formaldehyde (PF) commercial adhesive.
    Matched MeSH terms: Wood/chemistry*
  11. Arip MN, Heng LY, Ahmad M, Ujang S
    Talanta, 2013 Nov 15;116:776-81.
    PMID: 24148473 DOI: 10.1016/j.talanta.2013.07.065
    The characteristics of a potentiometric biosensor for the determination of permethrin in treated wood based on immobilised cells of the fungus Lentinus sajor-caju on a potentiometric transducer are reported this paper. The potentiometric biosensor was prepared by immobilisation of the fungus in alginate gel deposited on a pH-sensitive transducer employing a photocurable acrylic matrix. The biosensor gave a good response in detecting permethrin over the range of 1.0-100.0 µM. The slope of the calibration curve was 56.10 mV/decade with detection limit of 1.00 µM. The relative standard deviation for the sensor reproducibility was 4.86%. The response time of the sensor was 5 min at optimum pH 8.0 with 1.00 mg/electrode of fungus L. sajor-caju. The permethrin biosensor performance was compared with the conventional method for permethrin analysis using high performance liquid chromatography (HPLC), and the analytical results agreed well with the HPLC method (at 95% confidence limit). There was no interference from commonly used organophosphorus pesticides such as diazinon, parathion, paraoxon, and methyl parathion.
    Matched MeSH terms: Wood/chemistry*
  12. Anis S, Zainal ZA
    Bioresour Technol, 2013 Dec;150:328-37.
    PMID: 24185417 DOI: 10.1016/j.biortech.2013.10.010
    This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.
    Matched MeSH terms: Wood/chemistry*
  13. Hanafiah MA, Ngah WS, Zolkafly SH, Teong LC, Majid ZA
    J Environ Sci (China), 2012;24(2):261-8.
    PMID: 22655386
    The potential of base treated Shorea dasyphylla (BTSD) sawdust for Acid Blue 25 (AB 25) adsorption was investigated in a batch adsorption process. Various physiochemical parameters such as pH, stirring rate, dosage, concentration, contact time and temperature were studied. The adsorbent was characterized with Fourier transform infrared spectrophotometer, scanning electron microscope and Brunauer, Emmett and Teller analysis. The optimum conditions for AB 25 adsorption were pH 2, stirring rate 500 r/min, adsorbent dosage 0.10 g and contact time 60 min. The pseudo second-order model showed the best conformity to the kinetic data. The equilibrium adsorption of AB 25 was described by Freundlich and Langmuir, with the latter found to agree well with the isotherm model. The maximum monolayer adsorption capacity of BTSD was 24.39 mg/g at 300 K, estimated from the Langmuir model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy were determined. It was found that AB 25 adsorption was spontaneous and exothermic.
    Matched MeSH terms: Wood/chemistry
  14. Amouzgar P, Khalil HP, Salamatinia B, Abdullah AZ, Issam AM
    Bioresour Technol, 2010 Nov;101(21):8396-401.
    PMID: 20639118 DOI: 10.1016/j.biortech.2010.05.061
    In this study optimization of drying oil palm trunk core lumber (OPTCL) biomass using microwave radiation was reported. Optimizing of the drying conditions using microwave, avoid burning, shrinkage and increasing the permeability of OPT was aimed to develop a new value added material. A set of experiments was designed by central composite design using response surface methodology (RSM) to statistically evaluate the findings. Three independent process variables including time (2-10 min), sample weight (300-1000 g) and input power (660-3300 W) were studied under the given conditions designed by Design Expert software. The results showed the effectiveness of microwave drying in reducing the time and better removal of moisture as compared to that of oven drying with no significant changes. Employing optimum conditions at 6.89 min of time with a microwave power set at 4 for a sample of 1000 g, predicting 14.62% of moisture content.
    Matched MeSH terms: Wood/chemistry*
  15. Juhaida MF, Paridah MT, Mohd Hilmi M, Sarani Z, Jalaluddin H, Mohamad Zaki AR
    Bioresour Technol, 2010 Feb;101(4):1355-60.
    PMID: 19833509 DOI: 10.1016/j.biortech.2009.09.048
    A study was carried out to produce polyurethane (PU) as a wood laminating adhesive from liquefied kenaf core (LKC) polyols by reacting it with toluene-2,4-diisocyanate (TDI) and 1,4-butanediol (BDO). The LKC polyurethane (LKCPU) adhesive has a molecular weight (MW) of 2666, viscosity of 5370 mPa s, and solids content of 86.9%. The average shear strength of the rubberwood (RW) bonded with LKCPU adhesive was 2.9 MPa. Most of the sheared specimens experienced a total adhesive failure. The formation of air bubbles through the liberation of carbon dioxide was observed to reduce the adhesive penetration and bonding strength which was obviously seen on the sheared specimens. The percentage of catalyst used can be varied based on the usage and working time needed. Nonetheless, the physical properties of LKCPU produced in this work had shown good potential as edge-bonding adhesive.
    Matched MeSH terms: Wood/chemistry*
  16. Wong LC, Leh CP, Goh CF
    Carbohydr Polym, 2021 Jul 15;264:118036.
    PMID: 33910744 DOI: 10.1016/j.carbpol.2021.118036
    Hydrogels are an attractive system for a myriad of applications. While most hydrogels are usually formed from synthetic materials, lignocellulosic biomass appears as a sustainable alternative for hydrogel development. The valorization of biomass, especially the non-woody biomass to meet the growing demand of the substitution of synthetics and to leverage its benefits for cellulose hydrogel fabrication is attractive. This review aims to present an overview of advances in hydrogel development from non-woody biomass, especially using native cellulose. The review will cover the overall process from cellulose depolymerization, dissolution to crosslinking reaction and the related mechanisms where known. Hydrogel design is heavily affected by the cellulose solubility, crosslinking method and the related processing conditions apart from biomass type and cellulose purity. Hence, the important parameters for rational designs of hydrogels with desired properties, particularly porosity, transparency and swelling characteristics will be discussed. Current challenges and future perspectives will also be highlighted.
    Matched MeSH terms: Wood/chemistry
  17. Rajagopal H, Mokhtar N, Tengku Mohmed Noor Izam TF, Wan Ahmad WK
    PLoS One, 2020;15(5):e0233320.
    PMID: 32428043 DOI: 10.1371/journal.pone.0233320
    Image Quality Assessment (IQA) is essential for the accuracy of systems for automatic recognition of tree species for wood samples. In this study, a No-Reference IQA (NR-IQA), wood NR-IQA (WNR-IQA) metric was proposed to assess the quality of wood images. Support Vector Regression (SVR) was trained using Generalized Gaussian Distribution (GGD) and Asymmetric Generalized Gaussian Distribution (AGGD) features, which were measured for wood images. Meanwhile, the Mean Opinion Score (MOS) was obtained from the subjective evaluation. This was followed by a comparison between the proposed IQA metric, WNR-IQA, and three established NR-IQA metrics, namely Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE), deepIQA, Deep Bilinear Convolutional Neural Networks (DB-CNN), and five Full Reference-IQA (FR-IQA) metrics known as MSSIM, SSIM, FSIM, IWSSIM, and GMSD. The proposed WNR-IQA metric, BRISQUE, deepIQA, DB-CNN, and FR-IQAs were then compared with MOS values to evaluate the performance of the automatic IQA metrics. As a result, the WNR-IQA metric exhibited a higher performance compared to BRISQUE, deepIQA, DB-CNN, and FR-IQA metrics. Highest quality images may not be routinely available due to logistic factors, such as dust, poor illumination, and hot environment present in the timber industry. Moreover, motion blur could occur due to the relative motion between the camera and the wood slice. Therefore, the advantage of WNR-IQA could be seen from its independency from a "perfect" reference image for the image quality evaluation.
    Matched MeSH terms: Wood/chemistry
  18. Elgorashi EE, Eldeen IMS, Makhafola TJ, Eloff JN, Verschaeve L
    J Ethnopharmacol, 2022 Mar 01;285:114868.
    PMID: 34826541 DOI: 10.1016/j.jep.2021.114868
    ETHNOBOTANICAL RELEVANCE: Smoke from the wood of Acacia seyal Delile has been used by Sudanese women for making a smoke bath locally called Dukhan. The ritual is performed to relieve rheumatic pain, smooth skin, heal wounds and achieve general body relaxation.

    AIM OF THE STUDY: The present study was designed to investigate the in vitro anti-inflammatory effect of the smoke condensate using cyclooxygenase -1 (COX-1) and -2 (COX-2) as well as its potential genotoxic effects using the bacterial-based Ames test and the mammalian cells-based micronucleus/cytome and comet assays.

    MATERIAL AND METHODS: The smoke was prepared in a similar way to that commonly used traditionally by Sudanese women then condensed using a funnel. Cyclooxygenase assay was used to evaluate its in vitro anti-inflammatory activity. The neutral red uptake assay was conducted to determine the range of concentrations in the mammalian cells-based assays. The Ames, cytome and comet assays were used to assess its potential adverse (long-term) effects.

    RESULTS: The smoke condensate did not inhibit the cyclooxygenases at the highest concentration tested. All smoke condensate concentrations tested in the Salmonella/microsome assay induced mutation in both TA98 and TA100 in a dose dependent manner. A significant increase in the frequency of micronucleated cells, nucleoplasmic bridges and nuclear buds was observed in the cytome assay as well as in the % DNA damage in the comet assay.

    CONCLUSIONS: The findings indicated a dose dependent genotoxic potential of the smoke condensate in the bacterial and human C3A cells and may pose a health risk to women since the smoke bath is frequently practised. The study highlighted the need for further rigorous assessment of the risks associated with the smoke bath practice.

    Matched MeSH terms: Wood/chemistry*
  19. Wahi R, Bidin ER, Mohamed Asif NM, Nor Hamizat NA, Ngaini Z, Omar R, et al.
    Environ Sci Pollut Res Int, 2019 Aug;26(22):22246-22253.
    PMID: 31152421 DOI: 10.1007/s11356-019-05548-6
    Sago bark (SB) and empty fruit bunch (EFB) are available abundantly as agricultural waste in Sarawak. This study was conducted to investigate the physicochemical characteristics of SB and EFB as composting materials and used as a plant growth medium. The SB and EFB composts were prepared in a separate container by mixing chicken manure as compost accelerator and wood chips as a bulking agent in dry weight equivalent ratio (1:1:1). The maturity and stability of compost in 60-day composting periods were evaluated via physicochemical characterization of the composts in terms of pH, elemental content, total ash content, moisture content and nutrient analyses. The effect of the compost usage as growth medium was assessed towards water spinach and green mustard via seed germination and pot study. After 2 months, the colour of both composts was dark brown with an earthy smell. The acidic pH of the initial composting stage has changed into alkaline pH after 60 days of composting. Total NPK present in the SB and EFB composts were 0.96% and 1.21%, respectively. The germination index (GI) for the studied vegetables was above 100%, while the pot study showed that vegetables in compost media has higher growth compared to the control, after 14 days. SB and EFB are renewable waste which can be used as an excellent compost and able to improve the quality of the soil.
    Matched MeSH terms: Wood/chemistry
  20. Rafiqul IS, Sakinah AM, Zularisam AW
    Appl Biochem Biotechnol, 2015 Jun;176(4):1071-83.
    PMID: 25904039 DOI: 10.1007/s12010-015-1630-2
    Xylose-rich sawdust hydrolysate can be an economic substrate for the enzymatic production of xylitol, a specialty product. It is important to identify the process factors influencing xylitol production. This research aimed to screen the parameters significantly affecting bioxylitol synthesis from wood sawdust by xylose reductase (XR). Enzymatic bioxylitol production was conducted to estimate the effect of different variables reaction time (2-18 h), temperature (20-70 °C), pH (4.0-9.0), NADPH (1.17-5.32 g/L), and enzyme concentration (2-6 %) on the yield of xylitol. Fractional factorial design was followed to identify the key process factors. The screening design identified that time, temperature, and pH are the most significant factors influencing bioxylitol production among the variables with the values of 12 h, 35 °C, and 7.0, respectively. These conditions led to a xylitol yield of 71 % (w/w). This is the first report on the statistical screening of process variables influencing enzyme-based bioxylitol production from lignocellulosic biomass.
    Matched MeSH terms: Wood/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links