Displaying publications 1 - 20 of 171 in total

Abstract:
Sort:
  1. Zhu JJ, Liu Z
    J Environ Public Health, 2023;2023:6739550.
    PMID: 36824232 DOI: 10.1155/2023/6739550
    This article considers and adds empirical nuances to the recent conceptualization of pro-poor water management. Using the concept of pro-poor hydraulic governmentality along the Vietnam-Cambodia border of Thường Phước commune, we argue that water management is linked to local rural livelihoods in a complex and dynamic pro-poor mechanism. While certain policies organize local populations according to cost-effectiveness ignoring local customs, the practicalities of dealing with such constraints are much more ambivalent. This article demonstrates the structural pro-poor complexity among sand excavation, riverbank landslides, water management, local livelihoods, and populace resettlement. The government's resettlement plans and the perceptions of residents of these plans are intertwined with a wider political, economic, social, and cultural significance in the context of strong institutional power in Vietnam. Limitations and future research agenda are also indicated in the discussion and conclusion section.
    Matched MeSH terms: Water Supply*
  2. Heydari M, Othman F, Taghieh M
    PLoS One, 2016;11(6):e0156276.
    PMID: 27248152 DOI: 10.1371/journal.pone.0156276
    Optimal operation of water resources in multiple and multipurpose reservoirs is very complicated. This is because of the number of dams, each dam's location (Series and parallel), conflict in objectives and the stochastic nature of the inflow of water in the system. In this paper, performance optimization of the system of Karun and Dez reservoir dams have been studied and investigated with the purposes of hydroelectric energy generation and providing water demand in 6 dams. On the Karun River, 5 dams have been built in the series arrangements, and the Dez dam has been built parallel to those 5 dams. One of the main achievements in this research is the implementation of the structure of production of hydroelectric energy as a function of matrix in MATLAB software. The results show that the role of objective function structure for generating hydroelectric energy in weighting method algorithm is more important than water supply. Nonetheless by implementing ε- constraint method algorithm, we can both increase hydroelectric power generation and supply around 85% of agricultural and industrial demands.
    Matched MeSH terms: Water Supply*
  3. Bello MO, Solarin SA, Yen YY
    J Environ Manage, 2018 Aug 01;219:218-230.
    PMID: 29747103 DOI: 10.1016/j.jenvman.2018.04.101
    The primary objective of this paper is to investigate the isolated impacts of hydroelectricity consumption on the environment in Malaysia as an emerging economy. We use four different measures of environmental degradation including ecological footprint, carbon footprint, water footprint and CO2 emission as target variables, while controlling for GDP, GDP square and urbanization for the period 1971 to 2016. A recently introduced unit root test with breaks is utilized to examine the stationarity of the series and the bounds testing approach to cointegration is used to probe the long run relationships between the variables. VECM Granger causality technique is employed to examine the long-run causal dynamics between the variables. Sensitivity analysis is conducted by further including fossil fuels in the equations. The results show evidence of an inverted U-shaped relationship between environmental degradation and real GDP. Hydroelectricity is found to significantly reduce environmental degradation while urbanization is also not particularly harmful on the environment apart from its effect on air pollution. The VECM Granger causality results show evidence of unidirectional causality running from hydroelectricity and fossil fuels consumption to all measures of environmental degradation and real GDP per capita. There is evidence of feedback hypothesis between real GDP to all environmental degradation indices. The inclusion of fossil fuel did not change the behavior of hydroelectricity on the environment but fossil fuels significantly increase water footprint.
    Matched MeSH terms: Water Supply*
  4. Zomorodian M, Lai SH, Homayounfar M, Ibrahim S, Pender G
    PLoS One, 2017;12(12):e0188489.
    PMID: 29216200 DOI: 10.1371/journal.pone.0188489
    Conflicts over water resources can be highly dynamic and complex due to the various factors which can affect such systems, including economic, engineering, social, hydrologic, environmental and even political, as well as the inherent uncertainty involved in many of these factors. Furthermore, the conflicting behavior, preferences and goals of stakeholders can often make such conflicts even more challenging. While many game models, both cooperative and non-cooperative, have been suggested to deal with problems over utilizing and sharing water resources, most of these are based on a static viewpoint of demand points during optimization procedures. Moreover, such models are usually developed for a single reservoir system, and so are not really suitable for application to an integrated decision support system involving more than one reservoir. This paper outlines a coupled simulation-optimization modeling method based on a combination of system dynamics (SD) and game theory (GT). The method harnesses SD to capture the dynamic behavior of the water system, utilizing feedback loops between the system components in the course of the simulation. In addition, it uses GT concepts, including pure-strategy and mixed-strategy games as well as the Nash Bargaining Solution (NBS) method, to find the optimum allocation decisions over available water in the system. To test the capability of the proposed method to resolve multi-reservoir and multi-objective conflicts, two different deterministic simulation-optimization models with increasing levels of complexity were developed for the Langat River basin in Malaysia. The later is a strategic water catchment that has a range of different stakeholders and managerial bodies, which are however willing to cooperate in order to avoid unmet demand. In our first model, all water users play a dynamic pure-strategy game. The second model then adds in dynamic behaviors to reservoirs to factor in inflow uncertainty and adjust the strategies for the reservoirs using the mixed-strategy game and Markov chain methods. The two models were then evaluated against three performance indices: Reliability, Resilience and Vulnerability (R-R-V). The results showed that, while both models were well capable of dealing with conflict resolution over water resources in the Langat River basin, the second model achieved a substantially improved performance through its ability to deal with dynamicity, complexity and uncertainty in the river system.
    Matched MeSH terms: Water Supply*
  5. Foo DC
    J Environ Manage, 2008 Jul;88(2):253-74.
    PMID: 17433530
    Water reuse/recycle has gained much attention in recent years for environmental sustainability reasons, as well as the rising costs of fresh water and effluent treatment. Process integration techniques for the synthesis of water network have been widely accepted as a promising tool to reduce fresh water and wastewater flowrates via in-plant water reuse/recycle. To date, the focus in this area has been on water network synthesis problems, with little attention dedicated to the rare but realistic cases of so-called threshold problems. In this work, targeting for threshold problems in a water network is addressed using the recently developed numerical tool of water cascade analysis (WCA). Targeting for plant-wide integration is then addressed. By sending water sources across different geographical zones in plant-wide integration, the overall fresh water and wastewater flowrates are reduced simultaneously.
    Matched MeSH terms: Water Supply*
  6. Yusop Z, Chan CH, Katimon A
    Water Sci Technol, 2007;56(8):41-8.
    PMID: 17978431
    Rainfall-runoff processes in a small oil palm catchment (8.2 ha) in Johor, Malaysia were examined. Storm hydrographs show rapid responses to rainfall with a short time to peak. The estimated initial hydrologic loss for the oil palm catchment is 5 mm. Despite the low initial loss, the catchment exhibits a high proportion of baseflow, approximately 54% of the total runoff. On an event basis, the stormflow response factor and runoff coefficient ranges from 0.003 to 0.21, and 0.02 to 0.44, respectively. Peakflow and stormflow volume were moderately correlated with rainfall. The hydrographs were satisfactorily modelled using the Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). The efficiency indexes of the calibration and validation exercises are 0.81 and 0.82, respectively. Based on these preliminary findings, it could be suggested that an oil palm plantation would be able to serve reasonably well in regulating basic hydrological functions.
    Matched MeSH terms: Water Supply*
  7. Yunus AJ, Nakagoshi N, Salleh KO
    J Environ Sci (China), 2003 Mar;15(2):249-62.
    PMID: 12765268
    This study investigate the relationships between geomorphometric properties and the minimum low flow discharge of undisturbed drainage basins in the Taman Bukit Cahaya Seri Alam Forest Reserve, Peninsular Malaysia. The drainage basins selected were third-order basins so as to facilitate a common base for sampling and performing an unbiased statistical analyses. Three levels of relationships were observed in the study. Significant relationships existed between the geomorphometric properties as shown by the correlation network analysis; secondly, individual geomorphometric properties were observed to influence minimum flow discharge; and finally, the multiple regression model set up showed that minimum flow discharge (Q min) was dependent of basin area (AU), stream length (LS), maximum relief (Hmax), average relief (HAV) and stream frequency (SF). These findings further enforced other studies of this nature that drainage basins were dynamic and functional entities whose operations were governed by complex interrelationships occurring within the basins. Changes to any of the geomorphometric properties would influence their role as basin regulators thus influencing a change in basin response. In the case of the basin's minimum low flow, a change in any of the properties considered in the regression model influenced the "time to peak" of flow. A shorter time period would mean higher discharge, which is generally considered the prerequisite to flooding. This research also conclude that the role of geomorphometric properties to control the water supply within the stream through out the year even though during the drought and less precipitations months. Drainage basins are sensitive entities and any deteriorations involve will generate reciprocals and response to the water supply as well as the habitat within the areas.
    Matched MeSH terms: Water Supply*
  8. Ujang Z, Buckley C
    Water Sci Technol, 2002;46(9):1-9.
    PMID: 12448446
    This paper summarises the paper presentation sessions at the Conference, as well giving insights on the issues related to developing countries. It also discusses the present status of practice and research on water and wastewater management, and projected future scenario based not only on the papers presented in the Conference, but also on other sources. The strategy is presented to overcome many problems in developing countries such as rapid urbanization, industrialization, population growth, financial and institutional problems and, depleting water resources. The strategy consists of Integrated Urban Water Management (IUWM), cleaner industrial production, waste minimisation and financial arrangements.
    Matched MeSH terms: Water Supply*
  9. Niemczynowicz J
    Unesco Sources, 1996 Nov.
    PMID: 12295784
    Matched MeSH terms: Water Supply*
  10. Abdullah SNF, Ismail A, Juahir H, Lananan F, Hashim NM, Ariffin N, et al.
    Environ Sci Pollut Res Int, 2021 Jul;28(27):35613-35627.
    PMID: 33666850 DOI: 10.1007/s11356-021-12772-6
    Rainwater harvesting is an effective alternative practice, particularly within urban regions, during periods of water scarcity and dry weather. The collected water is mostly utilized for non-potable household purposes and irrigation. However, due to the increase in atmospheric pollutants, the quality of rainwater has gradually decreased. This atmospheric pollution can damage the climate, natural resources, biodiversity, and human health. In this study, the characteristics and physicochemical properties of rainfall were assessed using a qualitative approach. The three-year (2017-2019) data on rainfall in Peninsular Malaysia were analysed via multivariate techniques. The physicochemical properties of the rainfall yielded six significant factors, which encompassed 61.39% of the total variance as a result of industrialization, agriculture, transportation, and marine factors. The purity of rainfall index (PRI) was developed based on subjective factor scores of the six factors within three categories: good, moderate, and bad. Of the 23 variables measured, 17 were found to be the most significant, based on the classification matrix of 98.04%. Overall, three different groups of similarities that reflected the physicochemical characteristics were discovered among the rain gauge stations: cluster 1 (good PRI), cluster 2 (moderate PRI), and cluster 3 (bad PRI). These findings indicate that rainwater in Peninsular Malaysia was suitable for non-potable purposes.
    Matched MeSH terms: Water Supply*
  11. Mardi NH, Ean LW, Malek MA, Chua KH, Ahmed AN
    Environ Monit Assess, 2024 Nov 25;196(12):1244.
    PMID: 39581888 DOI: 10.1007/s10661-024-13394-4
    The power generation sector consumes significant amounts of water. A comprehensive water footprint (WF) assessment helps identify and monitor the processes consuming high amounts of water. This research evaluates the water footprint (WF) of electricity generation at a USC coal power plant, integrating on-site data for enhanced reliability. Based on the Water Footprint Assessment Manual, the electricity WF includes supply chain and operational WF. This study exhibits that the average electricity WF is 2.96 m3/MWh. The supply chain WF accounts for 95% of the total electricity WF, while operational WF contributes 5%. The blue WF accounts for 9.9% of the total electricity WF, while the grey water footprint accounts for 90.1%. The results of this research show a significant difference in the distribution of blue and grey WF in electricity WF. Factors contributing to the differences include the amount of coal consumption, power generation technology and power plant cooling technology. Furthermore, this study shows that grey WF depends on the concentration of pollutants considered. This research also conducted a WF impact assessment on local water resources and found that the blue and grey operational WF contributes to low impact. Monitoring the water footprint associated with electricity generation at a coal power plant would provide a more enhanced understanding of water consumption patterns, which could help influence water resources management.
    Matched MeSH terms: Water Supply/statistics & numerical data
  12. Rahman S, Khan MT, Akib S, Din NB, Biswas SK, Shirazi SM
    ScientificWorldJournal, 2014;2014:721357.
    PMID: 24701186 DOI: 10.1155/2014/721357
    Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH) is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3-N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical.
    Matched MeSH terms: Water Supply
  13. Chen PC
    Med J Malaysia, 1976 Sep;31(1):1-4.
    PMID: 1023005
    Matched MeSH terms: Water Supply
  14. Zomorodian M, Lai SH, Homayounfar M, Ibrahim S, Fatemi SE, El-Shafie A
    J Environ Manage, 2018 Dec 01;227:294-304.
    PMID: 30199725 DOI: 10.1016/j.jenvman.2018.08.097
    In recent years, water resources management has become more complicated and controversial due to the impacts of various factors affecting hydrological systems. System Dynamics (SD) has in turn become increasingly popular due to its advantages as a tool for dealing with such complex systems. However, SD also has some limitations. This review contains a comprehensive survey of the existing literature on SD as a potential method to deal with the complexity of system integrated modeling, with a particular focus on the application of SD to the integrated modeling of water resources systems. It discusses the limitations of SD in these contexts, and highlights a number of studies which have applied a combination of SD and other methods to overcome these limitations. Finally, our study makes a number of recommendations for future modifications in the application of SD methods in order to enhance their performance.
    Matched MeSH terms: Water Supply
  15. Mustafa S, Darwish M, Bahar A, Aziz ZA
    Ground Water, 2019 09;57(5):756-763.
    PMID: 30740693 DOI: 10.1111/gwat.12868
    Analytical studies for well design adjacent to river banks are the most significant practical task in cases involving the efficiency of riverbank filtration systems. In times when high pollution of river water is joined with increasing water demand, it is necessary to design pumping wells near the river that provide acceptable amounts of river water with minimum contaminant concentrations. This will guarantee the quality and safety of drinking water supplies. This article develops an analytical solution based on the Green's function approach to solve an inverse problem: based on the required level of contaminant concentration and planned pumping time period, the shortest distance to the riverbank that has the maximum percentage of river water is determined. This model is developed in a confined and homogenous aquifer that is partially penetrated by the stream due to the existence of clogging layers. Initially, the analytical results obtained at different pumping times, rates and with different values of initial concentration are checked numerically using the MODFLOW software. Generally, the distance results obtained from the proposed model are acceptable. Then, the model is validated by data related to two pumping wells located at the first riverbank filtration pilot project conducted in Malaysia.
    Matched MeSH terms: Water Supply
  16. Nhu VH, Mohammadi A, Shahabi H, Shirzadi A, Al-Ansari N, Ahmad BB, et al.
    PMID: 32545634 DOI: 10.3390/ijerph17124210
    The declining water level in Lake Urmia has become a significant issue for Iranian policy and decision makers. This lake has been experiencing an abrupt decrease in water level and is at real risk of becoming a complete saline land. Because of its position, assessment of changes in the Lake Urmia is essential. This study aims to evaluate changes in the water level of Lake Urmia using the space-borne remote sensing and GIS techniques. Therefore, multispectral Landsat 7 ETM+ images for the years 2000, 2010, and 2017 were acquired. In addition, precipitation and temperature data for 31 years between 1986 and 2017 were collected for further analysis. Results indicate that the increased temperature (by 19%), decreased rainfall of about 62%, and excessive damming in the Urmia Basin along with mismanagement of water resources are the key factors in the declining water level of Lake Urmia. Furthermore, the current research predicts the potential environmental crisis as the result of the lake shrinking and suggests a few possible alternatives. The insights provided by this study can be beneficial for environmentalists and related organizations working on this and similar topics.
    Matched MeSH terms: Water Supply
  17. Wang L, Li Y, Liang S, Xu M, Qu S
    Sci Total Environ, 2021 Dec 20;801:149781.
    PMID: 34467898 DOI: 10.1016/j.scitotenv.2021.149781
    Increasing trade cooperation under the Belt and Road (B&R) Initiative has promoted economic development and intensified the water scarcity risk transmission between China and countries along the route (B&R countries). Local water scarcity risk (LWSR, the potential direct production losses induced by local water scarcity) can transcend geographical boundaries through global supply chains and influence production activities in downstream economies. To understand the vulnerability of the Initiative to water scarcity, we investigated the impacts of LWSR in China and B&R countries on each other's economies during 2001-2013, using a global environmentally extended multi-regional input-output model. Results reveal that more than 80% of China's trade-related water scarcity risk imports (TWSR imports, the vulnerability to foreign water scarcity risk through imports) originates from B&R countries. The share of TWSR from China in total imports of B&R countries has steadily increased. In particular, India, Thailand, Iran, Pakistan and Kazakhstan have the largest TWSR exports (LWSR in each nation transmitted to other nations through its exports) to China, while South Korea, Thailand, Malaysia, Singapore and Indonesia have the largest imports from China. Water scarcity to their Agriculture sectors is responsible for TWSR transmission between them. Our study can contribute to the policy-making of governments and firms involved in mitigating the supply chain wide water scarcity risk. It also reveals the need for nations to collectively manage water resources to achieve sustainable development.
    Matched MeSH terms: Water Supply
  18. Fulazzaky MA, Syafiuddin A, Muda K, Martin AY, Yusop Z, Ghani NHA
    Environ Sci Pollut Res Int, 2023 Dec;30(58):121865-121880.
    PMID: 37962755 DOI: 10.1007/s11356-023-30967-x
    This paper reviewed the impacts of climate change on the management of the water sector in Malaysia discussing the current status of water resources, water service, and water-related disasters. The implementation of engineering practices was discussed to provide the detailed assessment of climate change impacts, risks, and adaptation for sustainable development. The narrative methods of reviewing the literatures were used to get an understanding on the engineering practices of water infrastructures, implication of the government policies, and several models as the main motivation behind the concept of integrated water resource management to contribute as part of the sustainable development goals to achieve a better and more sustainable future for all. The findings of this review highlighted the impacts of climate change on the rivers, sea, lakes, dams, and groundwater affecting the availability of water for domestic and industrial water supplies, irrigation, hydropower, and fisheries. The impacts of climate change on the water-related disasters have been indicated affecting drought-flood abrupt alternation and water pollution. Challenges of water management practices facing climate change should be aware of the updated intensity-duration-frequency curves, alternative sources of water, effective water demand management, efficiency of irrigation water, inter-basin water transfer, and nonrevenue water. The transferability of this review findings contribute to an engagement with the society and policy makers to mobilize for climate change adaptation in the water sector.
    Matched MeSH terms: Water Supply
  19. Mohd Ridzwan SF, Anual ZF, Sahani M, Ghazali AR
    Iran J Public Health, 2013 Dec;42(12):1374-86.
    PMID: 26060639
    Neurotoxicants present in water supply may affect human functions in terms of attention, response speed and perceptual motor speed. Neurobehavioural performance can be influenced by gender, age and education levels. This study aims to assess the neurobehavioral performance of palm oil estate residents with private water supply in southern Peninsular of Malaysia.
    Matched MeSH terms: Water Supply
  20. Vincent L, Michel L, Catherine C, Pauline R
    Water Sci Technol, 2014;70(5):787-94.
    PMID: 25225924 DOI: 10.2166/wst.2014.290
    Finding alternative resources to secure or increase water availability is a key issue in most urban areas. This makes the research of alternative and local water resources of increasing importance. In the context of political tension with its main water provider (Malaysia), Singapore has been implementing a comprehensive water policy for some decades, which relies on water demand management and local water resource mobilisation in order to reach water self-sufficiency by 2060. The production of water from alternative resources through seawater desalination or water reclamation implies energy consumptive technologies such as reverse osmosis. In the context of increasing energy costs and high primary energy dependency, this water self-sufficiency objective is likely to be an important challenge for Singapore. The aim of this paper is to quantify the long-term impact of Singapore's water policy on the national electricity bill and to investigate the impact of Singapore's projects to reduce its water energy footprint. We estimate that 2.0% of the Singaporean electricity demand is already dedicated to water and wastewater treatment processes. If its water-energy footprint dramatically increases in the coming decades, ambitious research projects may buffer the energy cost of water self-sufficiency.
    Matched MeSH terms: Water Supply*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links