Displaying all 4 publications

Abstract:
Sort:
  1. Mahboubeh Ebrahimian, Ahmad Ainuddin Nuruddin, Mohd Amin Mohd Soom, Alias Mohd Sood, Liew Juneng
    MyJurnal
    The hydrological effects of climate variation and land use conversion can occur at various spatial scales, but the most important sources of these changes are at the regional or watershed scale. In addition, the managerial and technical measures are primarily implemented at local and watershed scales in order to mitigate adverse impacts of human activities on the renewable resources of the watershed. Therefore, quantitative estimation of the possible hydrological consequences of potential land use and climate changes on hydrological regime at watershed scale is of tremendous importance. This paper focuses on the impacts of climate change as well as land use change on the hydrological processes of river basin based on pertinent published literature which were precisely scrutinized. The various causes, forms, and consequences of such impacts were discussed to synthesize the key findings of literature in reputable sources and to identify gaps in the knowledge where further research is required. Results indicate that the watershed-scale studies were found as a gap in tropical regions. Also, these studies are important to facilitate the application of results to real environment. Watershed scale studies are essential to measure the extent of influences made to the hydrological conditions and understanding of causes and effects of climate variation and land use conversion on hydrological cycle and water resources.
    Matched MeSH terms: Water Cycle
  2. Mohd Hanafiah Z, Wan Mohtar WHM, Abd Manan TS, Bachi NA, Abu Tahrim N, Abd Hamid HH, et al.
    PeerJ, 2023;11:e14719.
    PMID: 36748091 DOI: 10.7717/peerj.14719
    The environmental fate of non-steroidal anti-inflammatory drugs (NSAIDs) in the urban water cycle is still uncertain and their status is mainly assessed based on specific water components and information on human risk assessments. This study (a) explores the environmental fate of NSAIDs (ibuprofen, IBU; naproxen, NAP; ketoprofen, KET; diazepam, DIA; and diclofenac, DIC) in the urban water cycle, including wastewater, river, and treated water via gas chromatography-mass spectrophotometry (GCMS), (b) assesses the efficiency of reducing the targeted NSAIDs in sewage treatment plant (STP) using analysis of variance (ANOVA), and (c) evaluates the ecological risk assessment of these drugs in the urban water cycle via teratogenic index (TI) and risk quotient (RQ). The primary receptor of contaminants comes from urban areas, as a high concentration of NSAIDs is detected (ranging from 5.87 × 103 to 7.18 × 104 ng/L). The percentage of NSAIDs removal in STP ranged from 25.6% to 92.3%. The NAP and KET were still detected at trace levels in treated water, indicating the persistent presence in the water cycle. The TI values for NAP and DIA (influent and effluent) were more than 1, showing a risk of a teratogenic effect. The IBU, KET, and DIC had values of less than 1, indicating the risk of lethal embryo effects. The NAP and DIA can be classified as Human Pregnancy Category C (2.1 > TI ≥ 0.76). This work proved that these drugs exist in the current urban water cycle, which could induce adverse effects on humans and the environment (RQ in high and low-risk categories). Therefore, they should be minimized, if not eliminated, from the primary sources of the pollutant (i.e., STPs). These pollutants should be considered a priority to be monitored, given focus to, and listed in the guideline due to their persistent presence in the urban water cycle.
    Matched MeSH terms: Water Cycle
  3. Vincent L, Michel L, Catherine C, Pauline R
    Water Sci Technol, 2014;70(5):787-94.
    PMID: 25225924 DOI: 10.2166/wst.2014.290
    Finding alternative resources to secure or increase water availability is a key issue in most urban areas. This makes the research of alternative and local water resources of increasing importance. In the context of political tension with its main water provider (Malaysia), Singapore has been implementing a comprehensive water policy for some decades, which relies on water demand management and local water resource mobilisation in order to reach water self-sufficiency by 2060. The production of water from alternative resources through seawater desalination or water reclamation implies energy consumptive technologies such as reverse osmosis. In the context of increasing energy costs and high primary energy dependency, this water self-sufficiency objective is likely to be an important challenge for Singapore. The aim of this paper is to quantify the long-term impact of Singapore's water policy on the national electricity bill and to investigate the impact of Singapore's projects to reduce its water energy footprint. We estimate that 2.0% of the Singaporean electricity demand is already dedicated to water and wastewater treatment processes. If its water-energy footprint dramatically increases in the coming decades, ambitious research projects may buffer the energy cost of water self-sufficiency.
    Matched MeSH terms: Water Cycle
  4. Tajul Baharuddin MF, Taib S, Hashim R, Zainal Abidin MH, Ishak MF
    Environ Monit Assess, 2011 Sep;180(1-4):345-69.
    PMID: 21136290 DOI: 10.1007/s10661-010-1792-x
    Time-lapse resistivity measurements and groundwater geochemistry were used to study salinity effect on groundwater aquifer at the ex-promontory-land of Carey Island in Malaysia. Resistivity was measured by ABEM Terrameter SAS4000 and ES10-64 electrode selector. Relationship between earth resistivity and total dissolved solids (TDS) was derived, and with resistivity images, used to identify water types: fresh (ρ ( e ) > 6.5 Ω m), brackish (3 Ω m < ρ ( e ) < 6.5 Ω m), or saline (ρ ( e ) < 3 Ω m). Long-term monitoring of the studied area's groundwater quality via measurements of its time-lapse resistivity showed salinity changes in the island's groundwater aquifers not conforming to seawater-freshwater hydraulic gradient. In some aquifers far from the coast, saline water was dominant, while in some others, freshwater 30 m thick showed groundwater potential. Land transformation is believed to have changed the island's hydrogeology, which receives saltwater pressure all the time, limiting freshwater recharge to the groundwater system. The time-lapse resistivity measurements showed active salinity changes at resistivity-image bottom moving up the image for two seasons' (wet and dry) conditions. The salinity changes are believed to have been caused by incremental tide passing through highly porous material in the active-salinity-change area. The study's results were used to plan a strategy for sustainable groundwater exploration of the island.
    Matched MeSH terms: Water Cycle
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links