Displaying all 5 publications

Abstract:
Sort:
  1. Tye GJ, Lew MH, Choong YS, Lim TS, Sarmiento ME, Acosta A, et al.
    J Immunol Res, 2015;2015:916780.
    PMID: 26146643 DOI: 10.1155/2015/916780
    Development of vaccines for infectious diseases has come a long way with recent advancements in adjuvant developments and discovery of new antigens that are capable of eliciting strong immunological responses for sterile eradication of disease. Tuberculosis (TB) that kills nearly 2 million of the population every year is also one of the highlights of the recent developments. The availability or not of diagnostic methods for infection has implications for the control of the disease by the health systems but is not related to the immune surveillance, a phenomenon derived from the interaction between the bacteria and their host. Here, we will review the immunology of TB and current vaccine candidates for TB. Current strategies of developing new vaccines against TB will also be reviewed in order to further discuss new insights into immunotherapeutic approaches involving adjuvant and antigens combinations that might be of potential for the control of TB.
    Matched MeSH terms: Tuberculosis Vaccines/immunology*
  2. Chin KL, Anis FZ, Sarmiento ME, Norazmi MN, Acosta A
    J Immunol Res, 2017;2017:5212910.
    PMID: 28713838 DOI: 10.1155/2017/5212910
    Tuberculosis (TB) is an airborne infection caused by Mycobacterium tuberculosis (Mtb). About one-third of the world's population is latently infected with TB and 5-15% of them will develop active TB in their lifetime. It is estimated that each case of active TB may cause 10-20 new infections. Host immune response to Mtb is influenced by interferon- (IFN-) signaling pathways, particularly by type I and type II interferons (IFNs). The latter that consists of IFN-γ has been associated with the promotion of Th1 immune response which is associated with protection against TB. Although this aspect remains controversial at present due to the lack of established correlates of protection, currently, there are different prophylactic, diagnostic, and immunotherapeutic approaches in which IFNs play an important role. This review summarizes the main aspects related with the biology of IFNs, mainly associated with TB, as well as presents the main applications of these cytokines related to prophylaxis, diagnosis, and immunotherapy of TB.
    Matched MeSH terms: Tuberculosis Vaccines/immunology*
  3. Nguyen Thi le T, Sarmiento ME, Calero R, Camacho F, Reyes F, Hossain MM, et al.
    Tuberculosis (Edinb), 2014 Sep;94(5):475-81.
    PMID: 25034135 DOI: 10.1016/j.tube.2014.06.004
    The most important targets for vaccine development are the proteins that are highly expressed by the microorganisms during infection in-vivo. A number of Mycobacterium tuberculosis (Mtb) proteins are also reported to be expressed in-vivo at different phases of infection. In the present study, we analyzed multiple published databases of gene expression profiles of Mtb in-vivo at different phases of infection in animals and humans and selected 38 proteins that are highly expressed in the active, latent and reactivation phases. We predicted T- and B-cell epitopes from the selected proteins using HLAPred for T-cell epitope prediction and BCEPred combined with ABCPred for B-cell epitope prediction. For each selected proteins, regions containing both T- and B-cell epitopes were identified which might be considered as important candidates for vaccine design against tuberculosis.
    Matched MeSH terms: Tuberculosis Vaccines/immunology
  4. Fang CM, Zainuddin ZF, Musa M, Thong KL
    Protein Expr Purif, 2006 Jun;47(2):341-7.
    PMID: 16510294 DOI: 10.1016/j.pep.2005.12.007
    Tuberculosis remains a major infectious disease with over 8 million new cases and 2 million deaths annually. Therefore, a vaccine more potent than BCG is desperately needed. In this regard, an approximately 800 bp DNA encoding a mycobacterial synthetic gene designated as VacIII (containing ubiquitin gene UbGR and four immunogenic mycobacterial epitopes or genes of ESAT-6, Phos1, Hsp 16.3, and Mtb8.4) was sub-cloned into a bacterial expression vector of pRSET-B resulting in a 6 x His-VacIII fusion gene construction. This recombinant clone was over expressed in Escherichia coli BL-21 (DE-3). The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The inclusion bodies were solubilized with 8M urea and the recombinant protein was purified by Ni-NTA column and dialyzed by urea gradient dialysis. This method produced a relatively high yield of recombinant VacIII protein and the cloned VacIII gene offers the potential development of other vaccine formats such as DNA vaccine and recombinant vaccine.
    Matched MeSH terms: Tuberculosis Vaccines/immunology
  5. Mustafa AD, Kalyanasundram J, Sabidi S, Song AA, Abdullah M, Abdul Rahim R, et al.
    BMC Biotechnol, 2018 10 11;18(1):63.
    PMID: 30309359 DOI: 10.1186/s12896-018-0461-y
    BACKGROUND: Tuberculosis is one of the most common and deadliest infectious diseases worldwide affecting almost a third of the world's population. Although this disease is being prevented and controlled by the Bacille Calmette Guérin (BCG) vaccine, the protective efficacy is highly variable and substandard (0-80%) in adults. Therefore, novel and effective tuberculosis vaccine that can overcome the limitations from BCG vaccine need to be developed.

    RESULTS: A novel approach of utilizing an in-trans protein surface display system of Lactobacillus plantarum carrying and displaying combination of Mycobacterium tuberculosis subunit epitope antigens (Ag85B, CFP-10, ESAT-6, Rv0475 and Rv2031c) fused with LysM anchor motif designated as ACERL was constructed, cloned and expressed in Esherichia coli Rossetta expression host. Subsequently the binding capability of ACERL to the cell wall of L. plantarum was examined via the immunofluorescence microscopy and whole cell ELISA where successful attachment and consistent stability of cell wall binding up to 4 days was determined. The immunization of the developed vaccine of L. plantarum surface displaying ACERL (Lp ACERL) via the oral route was studied in mice for its immunogenicity effects. Lp ACERL immunization was able to invoke significant immune responses that favor the Th1 type cytokine response of IFN-γ, IL-12 and IL-2 as indicated by the outcome from the cytokine profiling of spleen, lung, gastrointestinal tract (GIT), and the re-stimulation of the splenocytes from the immunized mice. Co-administration of an adjuvant consisting of Lactococcus lactis secreting mouse IL-12 (LcIL-12) with Lp ACERL was also investigated. It was shown that the addition of LcIL-12 was able to further generate significant Th1 type cytokines immune responses, similar or better than that of Lp ACERL alone which can be observed from the cytokine profiling of the immunized mice's spleen, lung and GIT.

    CONCLUSIONS: This study represents a proof of concept in the development of L. plantarum as a carrier for a non-genetically modified organism (GMO) tuberculosis vaccine, which may be the strategy in the future for tuberculosis vaccine development.

    Matched MeSH terms: Tuberculosis Vaccines/immunology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links