Displaying all 4 publications

Abstract:
Sort:
  1. García Mde L, Borrero R, Lanio ME, Tirado Y, Alvarez N, Puig A, et al.
    Biomed Res Int, 2014;2014:273129.
    PMID: 25548767 DOI: 10.1155/2014/273129
    A more effective vaccine against tuberculosis (TB) is urgently needed. Based on its high genetic homology with Mycobacterium tuberculosis (Mtb), the nonpathogenic mycobacteria, Mycobacterium smegmatis (Ms), could be an attractive source of potential antigens to be included in such a vaccine. We evaluated the capability of lipid-based preparations obtained from Ms to provide a protective response in Balb/c mice after challenge with Mtb H37Rv strain. The intratracheal model of progressive pulmonary TB was used to assess the level of protection in terms of bacterial load as well as the pathological changes in the lungs of immunized Balb/c mice following challenge with Mtb. Mice immunized with the lipid-based preparation from Ms either adjuvanted with Alum (LMs-AL) or nonadjuvanted (LMs) showed significant reductions in bacterial load (P < 0.01) compared to the negative control group (animals immunized with phosphate buffered saline (PBS)). Both lipid formulations showed the same level of protection as Bacille Calmette and Guerin (BCG). Regarding the pathologic changes in the lungs, mice immunized with both lipid formulations showed less pneumonic area when compared with the PBS group (P < 0.01) and showed similar results compared with the BCG group. These findings suggest the potential of LMs as a promising vaccine candidate against TB.
    Matched MeSH terms: Tuberculosis, Pulmonary/immunology
  2. Chin ST, Ignatius J, Suraiya S, Tye GJ, Sarmiento ME, Acosta A, et al.
    Immunology, 2015 Feb;144(2):302-11.
    PMID: 25158076 DOI: 10.1111/imm.12372
    The acquired immune response against tuberculosis is commonly associated with T-cell responses with little known about the role of B cells or antibodies. There have been suggestions that B cells and humoral immunity can modulate the immune response to Mycobacterium tuberculosis. However, the mechanisms involving B-cell responses in M. tuberculosis are not fully understood, in particular the antibody gene preferences. We hypothesized that a preferential use of V genes can be seen associated with resistance to infection mainly in the IgA isotype, which is of prominent importance for infection by pathogens via the mucosal route. We studied healthy individuals with long-term exposure to tuberculosis, infected (TST(+) ) and uninfected TST(-) ) with M. tuberculosis. From a total of 22 V genes analysed, the TST(-) population preferred the VH 3-23 and Vκ1 genes. The VH 3-23 genes were subsequently subjected to 454 amplicon sequencing. The TST(-) population showed a higher frequency of the D3-10 segment compared with the D3-22 segment for the TST(+) population. The J segment usage pattern was similar for both populations with J4 segment being used the most. A preferential pairing of J4 segments to D3-3 was seen for the TST(-) population. The antibodyome difference between both populations suggests a preference for antibodies with VH 3-23, D3-3, JH 4 gene usage by the TST(-) population that could be associated with resistance to infection with M. tuberculosis.
    Matched MeSH terms: Tuberculosis, Pulmonary/immunology*
  3. Tirado Y, Puig A, Alvarez N, Borrero R, Aguilar A, Camacho F, et al.
    Tuberculosis (Edinb), 2016 12;101:44-48.
    PMID: 27865396 DOI: 10.1016/j.tube.2016.07.017
    Tuberculosis (TB) remains an important cause of mortality and morbidity. The TB vaccine, BCG, is not fully protective against the adult form of the disease and is unable to prevent its transmission although it is still useful against severe childhood TB. Hence, the search for new vaccines is of great interest. In a previous study, we have shown that proteoliposomes obtained from Mycobacterium smegmatis (PLMs) induced cross reactive humoral and cellular response against Mycobacterium tuberculosis (Mtb) antigens. With the objective to evaluate the protective capability of PLMs, a murine model of progressive pulmonary TB was used. Animals immunized with PLMs with and without alum (PLMs/PLMsAL respectively) showed protection compared to non-immunized animals. Mice immunized with PLMsAL induced similar protection as that of BCG. Animals immunized with BCG, PLMs and PLMsAL showed a significant decrease in tissue damage (percentage of pneumonic area/lung) compared to non-immunized animals, with a more prominent effect in BCG vaccinated mice. The protective effect of the administration of PLMs in mice supports its future evaluation as experimental vaccine candidate against Mtb.
    Matched MeSH terms: Tuberculosis, Pulmonary/immunology
  4. Saeidi A, Chong YK, Yong YK, Tan HY, Barathan M, Rajarajeswaran J, et al.
    Cell Immunol, 2015 Sep;297(1):19-32.
    PMID: 26071876 DOI: 10.1016/j.cellimm.2015.05.005
    The role of T-cell immunosenescence and functional CD8(+) T-cell responses in HIV/TB co-infection is unclear. We examined and correlated surrogate markers of HIV disease progression with immune activation, immunosenescence and differentiation using T-cell pools of HIV/TB co-infected, HIV-infected and healthy controls. Our investigations showed increased plasma viremia and reduced CD4/CD8 T-cell ratio in HIV/TB co-infected subjects relative to HIV-infected, and also a closer association with changes in the expression of CD38, a cyclic ADP ribose hydrolase and CD57, which were consistently expressed on late-senescent CD8(+) T cells. Up-regulation of CD57 and CD38 were directly proportional to lack of co-stimulatory markers on CD8(+) T cells, besides diminished expression of CD127 (IL-7Rα) on CD57(+)CD4(+) T cells. Notably, intracellular IFN-γ, perforin and granzyme B levels in HIV-specific CD8(+) T cells of HIV/TB co-infected subjects were diminished. Intracellular CD57 levels in HIV gag p24-specific CD8(+) T cells were significantly increased in HIV/TB co-infection. We suggest that HIV-TB co-infection contributes to senescence associated with chronic immune activation, which could be due to functional insufficiency of CD8(+) T cells.
    Matched MeSH terms: Tuberculosis, Pulmonary/immunology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links