Displaying all 4 publications

Abstract:
Sort:
  1. Wong WL, Brennan GP, Halton DW, Maule AG, Lim LH
    Parasitol Res, 2014 Nov;113(11):3935-46.
    PMID: 25098344 DOI: 10.1007/s00436-014-4057-8
    Caballeria liewi Lim, 1995, uses adhesive secretions from the head organs and posterior secretory systems to assist in locomotion and attachment. Ultrastructural investigations show that the head organs of C. liewi consist of three pairs of antero-lateral pit-like openings bearing microvilli and ducts leading from two types of uninucleated gland cells (located lateral to the pharynx), one type producing rod-like (S1) bodies with an electron-dense matrix containing less electron-dense vesicles and the second type producing oval (S2) bodies with a homogeneous electron-dense matrix. Interlinking band-like structures are observed between S1 bodies and between S2 bodies. S1 body is synthesised in the granular endoplasmic reticulum, transported to a Golgi complex to be packaged into vesicles and routed into ducts for exudation. The synthesis of the S2 body is unresolved. Haptoral secretions manifested externally as net-like structures are derived from dual electron-dense (DED) secretory body produced in the peduncular gland cells. The DED body consists of a less electron-dense oval core in a homogeneous electron-dense matrix. On exocytosis into the pyriform haptoral reservoir, DED bodies are transformed into a secretion with two types of inclusions (less electron-dense oval and electron-dense spherical inclusions) in an electron-dense matrix. The secretions are further transformed (as small, oval, electron-dense bodies) when transported to the superficial anchor grooves, and on exudation into the gill tissues, the secretions become an electron-dense matrix. Secretory bodies associated with uniciliated structures, anchor sleeves and marginal hooks are also observed.
    Matched MeSH terms: Trematoda/ultrastructure*
  2. Lim LH, Gibson DI
    Syst Parasitol, 2008 Jan;69(1):59-73.
    PMID: 18030603
    Numerous specimens of Ancyrocephaloides triacanthi Yamaguti, 1938 and A. chauhani Bychowsky & Nagibina, 1975 were collected from two triacanthid fishes, Triacanthus biaculeatus and Tripodichthys blochii, off Peninsular Malaysia. The two monogenean species are redescribed and considered to be the only valid species of Ancyrocephaloides Yamaguti, 1938. Examinations of these worms revealed new features, e.g. the presence of exudates (both net-like and bundle-like) and superficial grooves in the anchors in both species, which necessitated re-descriptions of the two species and amendments to the generic diagnosis. Both species have relatively small anchors with two lateral superficial grooves along the shaft and point, peduncular glands and four large, pyriform secretory reservoirs in the peduncular-haptoral region, each with a single tubular extension to an associated anchor, and net-like structures (exudate) attached to the anchors. The net-like structures are one of the external manifestations of the secretion produced in the peduncular glands and stored in the pyriform secretory reservoirs. When released within the gill-tissue of the host, the exudate is in the form of bundles which extend within the gill-filament. The small anchors convey secretions from the secretory reservoirs via lateral superficial grooves into the gills as the anchors pierce the host tissue for attachment. The secretion coagulates as left and right thread-like bundles of exudate within the gill tissues and is only apparent as nets when it is released into the surrounding water. The recurved point of the anchor and position of the point of exudation allow the nets to remain attached to the anchor point, even after the detachment of the anchors from the gill tissue. This exudate possibly acts somewhat like a 'belay device' or 'safety belt', preventing the parasite from being washed away by the respiratory current during the onset of its leech-like locomotion, as well as assist the relatively small anchors in attachment.
    Matched MeSH terms: Trematoda/ultrastructure
  3. Lim LH, Gibson DI
    Syst Parasitol, 2007 Jun;67(2):101-17.
    PMID: 17143570
    Two known and two new species of Diplectanocotyla Yamaguti, 1953 (D. gracilis Yamaguti, 1953, D. megalopis Rakotofiringa & Oliver, 1987, D. langkawiensis n. sp. and D. parva n. sp.) were collected from Megalops cyprinoides (Megalopidae) off Langkawi, Kedah and Matang, Perak, Peninsular Malaysia. All four species possess similar types of sclerotised male and female reproductive structures and similar soft anatomical features. The squamodisc sclerites of all four species have spine-like projections with varying degrees of visibility and shapes (sharp-pointed to triangular). In D. megalopis and D. langkawiensis n. sp. the spines are sharp-pointed and distinct on sclerites from rows 5-6 onwards. In D. gracilis and D. parva n. sp. the sclerite spines are triangular, lightly sclerotised and occur on almost all of the sclerites. D. parva n. sp. has comparatively the smallest set of anchors, bars, squamodiscs and squamodisc suckers. The anchors and bars of the other three species are almost similar in overall size, and the main distinguishing feature is the relative lengths of the inner and outer roots of the ventral anchors. In D. gracilis the outer root is very much smaller than the inner root and they are disposed almost at a right angle to each other. In D. megalopis the outer root is usually about half the length of the inner root and the roots are inclined at c.60 degrees to each other. In D. langkawiensis n. sp. the roots are inclined at c.40 degrees degrees and the outer root is of a similar length or only slightly shorter than the inner root. The openings of the two squamodisc suckers of all four Diplectanocotyla species are surrounded by tiny scale-like spines. Bifid tegumental spines are found in the posterior region of all four species, differing only in their extent: in D. parva n. sp. the tegumental spines are only distributed in the peduncular region and not beyond, whilst in the other three species the tegumental spines extend from the posterior level of the testis to the end of the peduncle. An amended diagnosis of Diplectanocotyla and a key to its species are appended.
    Matched MeSH terms: Trematoda/ultrastructure
  4. Lim LH, Justine JL
    Folia Parasitol., 2007 Sep;54(3):203-7.
    PMID: 19245191
    Sixteen labrid species, including four Bodianus spp., were examined in New Caledonia (South Pacific) and monogeneans were found only on Bodianus perditio (Quoy et Gaimard). This species, Haliotrema banana sp. n., is the second Haliotrema species to be described from the labrids, the first being Haliotrema bodiani Yamaguti, 1968 from Bodianus albotaeniatus (Valenciennes), previously designated as B. bilunulatus (Lacépède). The new species is similar to H. bodiani in soft reproductive parts but differs from it in the morphologies of the hard haptoral parts, mainly in the shape of the dorsal bar (bar-shaped vs V-shaped in H. bodiani) and ventral bar. It is similar to Haliotrema spirale Yamaguti, 1968 and Haliotrema minutospirale Yamaguti, 1968 in the shape of the anchors and bars but differs from them in the detailed structures of the copulatory organ and vaginal system.
    Matched MeSH terms: Trematoda/ultrastructure
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links