Culinary and medicinal mushrooms have been appreciated since prehistoric times as valuable resources for food and medicine. Edible mushrooms represent an untapped source of nutraceuticals and valuable palatable food. Long considered tonics, they are now treasured as functional foods that can improve human health and quality of life. Numerous studies have provided insights into the neuroprotective effects of edible mushrooms, which are attributed to their antioxidant, antineuroinflammatory, and cholinesterase inhibitory properties, and their ability to prevent neuronal death. Here we review the recent literature on the role of culinary and medicinal mushrooms in the management of neurodegenerative diseases and neurotrauma. We highlight some of the molecular mechanisms for how these alternative medicines provide health benefits that could help us to harness their neuroprotective effects.
Introduction: Peripheral nerve injuries (PNI) are a disabling injury as it often results in motor and sensory deficit with cognitive impairment. Flaxseed oil provides a good source of omega-3 fatty acid and it is believed to be able to protect the damaged nerve cell for successful nerve recovery. This study aimed to investigate a potential neuro-re- generation properties of flaxseed oil in treating the PNI. Methods: A total of 65 rats were separated into 4 groups: Group 1: Normal group (n=5), Group 2: Negative group (n=20), Group 3: Experimental group (n=20) and Group 4: Positive control (n=20), all the group were further divided into 4 groups (post-operative 7, 14, 21, 28 days, n=5 for each days). The functional restoration was assessed by walking track analysis (Sciatic Functional Index analysis-SFI) and toe spreading reflex (grading score). Electron microscope studies were performed on sciatic nerve to evaluate the regenerative process through morphologic and morphometric changes. Results: Oral administration of flaxseed oil (experimental group) at 1000 mg/kg body weight/day showed better recovery compared to negative control value. However, there was no significant difference in SFI and toe spreading reflex between positive (mecobalamin) and experimental group (flaxseed oil). Morphological and morphometrical findings indicated increases in the myelin thickness and myelin sheath layer after administration of flaxseed oil. Conclusion: The flaxseed oil supplementation could enhance the neurorestorative capacities of injured sciatic nerve.
Nerve crush injuries are commonly used models for axonotmesis to examine peripheral nerve regeneration. As evening primrose oil (EPO) is rich in omega-6 essential fatty acid component and gamma-linolenic acid, studies have shown the potential role of EPO in myelination. Seventy-two healthy adult Sprague-Dawley rats were classified into three groups: normal group, control group, and experimental group. The result indicates that there was significant difference in toe-spreading reflex between the normal and the control groups (1.9 ± 0.031, p < 0.05) and the normal and the EPO groups (0.4 ± 0.031, p < 0.05) and significant difference between EPO and the control groups (1.5 ± 0.031, p < 0.05). Regeneration of axons and myelin in nerve fibre in the EPO-treated group developed better and faster than in the control group. In the control group, the shape of the axon was irregular with a thinner myelin sheath. In the experimental group, the shape of the axons, the thickness of the myelin sheath, and the diameter of the axons were almost the same as in the normal group. In conclusion, EPO supplementation may be beneficial as a therapeutic option for disturbances of nerve interaction.