Displaying all 6 publications

Abstract:
Sort:
  1. Boonhok R, Sangkanu S, Norouzi R, Siyadatpanah A, Mirzaei F, Mitsuwan W, et al.
    Parasitology, 2021 Aug;148(9):1074-1082.
    PMID: 33966667 DOI: 10.1017/S0031182021000718
    Cassia angustifolia Vahl. plant is used for many therapeutic purposes, for example, in people with constipation, skin diseases, including helminthic and parasitic infections. In our study, we demonstrated an amoebicidal activity of C. angustifolia extract against Acanthamoeba triangularis trophozoite at a micromolar level. Scanning electron microscopy (SEM) images displayed morphological changes in the Acanthamoeba trophozoite, which included the formation of pores in cell membrane and the membrane rupture. In addition to the amoebicidal activity, effects of the extract on surviving trophozoites were observed, which included cyst formation and vacuolization by a microscope and transcriptional expression of Acanthamoeba autophagy in response to the stress by quantitative polymerase chain reaction. Our data showed that the surviving trophozoites were not transformed into cysts and the trophozoite number with enlarged vacuole was not significantly different from that of untreated control. Molecular analysis data demonstrated that the mRNA expression of AcATG genes was slightly changed. Interestingly, AcATG16 decreased significantly at 12 h post treatment, which may indicate a transcriptional regulation by the extract or a balance of intracellular signalling pathways in response to the stress, whereas AcATG3 and AcATG8b remained unchanged. Altogether, these data reveal the anti-Acanthamoeba activity of C. angustifolia extract and the autophagic response in the surviving trophozoites under the plant extract pressure, along with data on the formation of cysts. These represent a promising plant for future drug development. However, further isolation and purification of an active compound and cytotoxicity against human cells are needed, including a study on the autophagic response at the protein level.
    Matched MeSH terms: Transcription, Genetic/drug effects*
  2. Wong PF, Abubakar S
    Oncol Rep, 2010 Jun;23(6):1501-16.
    PMID: 20428803
    The normally high concentration of zinc in normal prostate gland is significantly reduced in malignant prostate tissues, but its precise role in prostate tumorigenesis remains unclear. The present study investigates the growth and transcriptional responses of LNCaP prostate cancer cells to prolonged high Zn2+ treatment. Restoration of high intracellular Zn2+ to LNCaP cells significantly reduced the cell proliferation rate by 42.2+/-7.4% at the exponential growth phase and the efficiency of colony formation on soft agar by 87.2+/-2.5% at week 5 post-treatment. At least 161 LNCaP cell genes responded to the high intracellular Zn2+, including approximately 10.6% genes that negatively regulate cell growth and approximately 16.1% genes that promote cancer cell proliferation. Inhibition of cell growth was transient as normal proliferation rate and colony formation efficiency were restored later even in the continuous presence of high intracellular Zn2+. RT-qPCR showed constitutively higher expression levels of FBL, CD164 and STEAP1 in LNCaP cells. FBL and CD164 were responsive to the treatment with Zn2+ in PNT2 prostate normal cells and were further overexpressed in the prolonged Zn2+-treated LNCaP cells. These observations suggest that in general high Zn2+ has suppressive effects on prostate cancer cell growth but continuous exposure to an environment of high Zn2+ can lead to the overexpression of cancer promoting genes such as FBL and CD164. This could be the antagonistic mechanism used to overcome the initial cell growth inhibitory effects of high Zn2+. These findings support a potential detrimental role of Zn2+ in prostate cancer.
    Matched MeSH terms: Transcription, Genetic/drug effects*
  3. Laitem C, Zaborowska J, Isa NF, Kufs J, Dienstbier M, Murphy S
    Nat Struct Mol Biol, 2015 May;22(5):396-403.
    PMID: 25849141 DOI: 10.1038/nsmb.3000
    Transcription through early-elongation checkpoints requires phosphorylation of negative transcription elongation factors (NTEFs) by the cyclin-dependent kinase (CDK) 9. Using CDK9 inhibitors and global run-on sequencing (GRO-seq), we have mapped CDK9 inhibitor-sensitive checkpoints genome wide in human cells. Our data indicate that early-elongation checkpoints are a general feature of RNA polymerase (pol) II-transcribed human genes and occur independently of polymerase stalling. Pol II that has negotiated the early-elongation checkpoint can elongate in the presence of inhibitors but, remarkably, terminates transcription prematurely close to the terminal polyadenylation (poly(A)) site. Our analysis has revealed an unexpected poly(A)-associated elongation checkpoint, which has major implications for the regulation of gene expression. Interestingly, the pattern of modification of the C-terminal domain of pol II terminated at this new checkpoint largely mirrors the pattern normally found downstream of the poly(A) site, thus suggesting common mechanisms of termination.
    Matched MeSH terms: Transcription, Genetic/drug effects*
  4. Chew CH, Chew GS, Najimudin N, Tengku-Muhammad TS
    Int J Biochem Cell Biol, 2007;39(10):1975-86.
    PMID: 17616429
    Peroxisome proliferator activated receptor alpha has been implicated as a regulator of acute phase response genes in hepatocytes. Interleukin-6 is widely known as a major cytokine responsible in the regulation of acute phase proteins and, therefore, acute phase response. Unfortunately, to date, very little is understood about the molecular mechanisms by which interleukin-6 regulates the gene expression of peroxisome proliferator activated receptor alpha. Here, we report the molecular mechanisms by which peroxisome proliferator activated receptor alpha was regulated by interleukin-6 in human HepG2 cells. Interleukin-6 was shown to down-regulate the peroxisome proliferator activated receptor alpha gene expression at the level of gene transcription. Functional dissection of human peroxisome proliferator activated receptor alpha promoter B revealed the role of predicted CCAAT/enhancer-binding protein binding site (-164/+34) in mediating the interleukin-6 inhibitory effects on peroxisome proliferator activated receptor alpha mRNA expression and electrophoretic mobility shift assay showed the binding of CCAAT/enhancer-binding protein isoforms to this cis-acting elements was increased in interleukin-6-treated HepG2 cells. Co-transfection experiments, then, demonstrated that CCAAT/enhancer-binding protein beta either in homodimer or heterodimer with CCAAT/enhancer-binding protein alpha and CCAAT/enhancer-binding protein delta plays a predominant role in inhibiting the transcriptional activity of peroxisome proliferator activated receptor alpha promoter B, thus, reducing the peroxisome proliferator activated receptor alpha mRNA expression. These studies, therefore, suggest a novel mechanism for interleukin-6-mediated inhibition of peroxisome proliferator activated receptor alpha gene expression that involves the activation of CCAAT/enhancer-binding protein isoforms with CCAAT/enhancer-binding protein beta may play a major role.
    Matched MeSH terms: Transcription, Genetic/drug effects
  5. Greenwood M, Greenwood MP, Mecawi AS, Loh SY, Rodrigues JA, Paton JF, et al.
    Mol Brain, 2015 Oct 26;8(1):68.
    PMID: 26503226 DOI: 10.1186/s13041-015-0159-1
    BACKGROUND: Arginine vasopressin (AVP), a neuropeptide hormone that functions in the regulation of water homeostasis by controlling water re-absorption at kidneys, is synthesised in supraoptic nucleus and paraventricular nucleus of the hypothalamus. An increase in plasma osmolality stimulates secretion of AVP to blood circulation and induces AVP synthesis in these nuclei. Although studies on mechanism of AVP transcriptional regulation in hypothalamus proposed that cAMP and glucocorticoids positively and negatively regulate Avp expression, respectively, the molecular mechanisms have remained elusive. Recently, we identified CREB3L1 (cAMP-responsive element binding protein 3 like 1) as a putative transcription factor of Avp transcription in the rat hypothalamus. However the mechanism of how CREB3L1 is regulated in response of hyperosmotic stress in the neurons of hypothalamus has never been reported. This study aims to investigate effect of previously reported regulators (cAMP and glucocorticoid) of Avp transcription on transcription factor CREB3L1 in order to establish a molecular explanation for cAMP and glucocorticoids effect on AVP expression.

    RESULTS: The effect of cAMP and glucocorticoid treatment on Creb3l1 was investigated in both AtT20 cells and hypothalamic organotypic cultures. The expression of Creb3l1 was increased in both mRNA and protein level by treatment with forskolin, which raises intracellular cAMP levels. Activation of cAMP by forskolin also increased Avp promoter activity in AtT20 cells and this effect was blunted by shRNA mediated silencing of Creb3l1. The forskolin induced increase in Creb3l1 expression was diminished by combined treatment with dexamethasone, and, in vivo, intraperitoneal dexamethasone injection blunted the increase in Creb3l1 and Avp expression induced by hyperosmotic stress.

    CONCLUSION: Here we shows that cAMP and glucocorticoid positively and negatively regulate Creb3l1 expression in the rat hypothalamus, respectively, and regulation of cAMP on AVP expression is mediated through CREB3L1. This data provides the connection between CREB3L1, a newly identified transcription factor of AVP expression, with the previously proposed mechanism of Avp transcription which extends our understanding in transcription regulation of Avp in the hypothalamus.

    Matched MeSH terms: Transcription, Genetic/drug effects*
  6. Greenwood MP, Greenwood M, Mecawi AS, Antunes-Rodrigues J, Paton JF, Murphy D
    Mol Brain, 2016 Jan 07;9:1.
    PMID: 26739966 DOI: 10.1186/s13041-015-0182-2
    BACKGROUND: Rasd1 is a member of the Ras family of monomeric G proteins that was first identified as a dexamethasone inducible gene in the pituitary corticotroph cell line AtT20. Using microarrays we previously identified increased Rasd1 mRNA expression in the rat supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus in response to increased plasma osmolality provoked by fluid deprivation and salt loading. RASD1 has been shown to inhibit adenylyl cyclase activity in vitro resulting in the inhibition of the cAMP-PKA-CREB signaling pathway. Therefore, we tested the hypothesis that RASD1 may inhibit cAMP stimulated gene expression in the brain.

    RESULTS: We show that Rasd1 is expressed in vasopressin neurons of the PVN and SON, within which mRNA levels are induced by hyperosmotic cues. Dexamethasone treatment of AtT20 cells decreased forskolin stimulation of c-Fos, Nr4a1 and phosphorylated CREB expression, effects that were mimicked by overexpression of Rasd1, and inhibited by knockdown of Rasd1. These effects were dependent upon isoprenylation, as both farnesyltransferase inhibitor FTI-277 and CAAX box deletion prevented Rasd1 inhibition of cAMP-induced gene expression. Injection of lentiviral vector into rat SON expressing Rasd1 diminished, whereas CAAX mutant increased, cAMP inducible genes in response to osmotic stress.

    CONCLUSIONS: We have identified two mechanisms of Rasd1 induction in the hypothalamus, one by elevated glucocorticoids in response to stress, and one in response to increased plasma osmolality resulting from osmotic stress. We propose that the abundance of RASD1 in vasopressin expressing neurons, based on its inhibitory actions on CREB phosphorylation, is an important mechanism for controlling the transcriptional responses to stressors in both the PVN and SON. These effects likely occur through modulation of cAMP-PKA-CREB signaling pathway in the brain.

    Matched MeSH terms: Transcription, Genetic/drug effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links