Displaying all 13 publications

Abstract:
Sort:
  1. Arisht SN, Abdul PM, Jasni J, Mohd Yasin NH, Lin SK, Wu SY, et al.
    Ecotoxicol Environ Saf, 2020 Oct 15;203:110991.
    PMID: 32888602 DOI: 10.1016/j.ecoenv.2020.110991
    The stimulant and toxicity effects of reported organic (acetic acid, propionic acid, butyric acid, formic acid, oil & grease) and inorganic (copper) by-products presented in palm oil mill effluent on anaerobic bacterial population were examined in this paper. The toxicity test had shown that acetic, propionic and butyric acids tend to stimulate the bacterial density level (survival rate more than 50%), while formic acid, copper, oil and grease were shown to have suppressed the density level (survival rate less than 50%). The highest biomass recorded was 1.66 mg/L for the concentration of acetic acid at 216 mg/L and lowest biomass concentration, 0.90 mg/L for copper at 1.40 mg/L. Biohydrogen-producing bacteria have a favourable growth rate around pH 5.5. The comparison of half maximal effective concentration (EC50) values between two test duration on the effects of organic and inorganic by-products postulate that bacteria had a higher tolerance towards volatile fatty acids. While acetic, butyric and propionic acids had exhibited higher tolerance EC50 values for bacteria, but the opposite trend was observed for formic acid, copper and oil & grease.
    Matched MeSH terms: Toxicity Tests/methods*
  2. Yusof S, Ismail A, Alias MS
    Mar Pollut Bull, 2014 Aug 30;85(2):494-8.
    PMID: 24731878 DOI: 10.1016/j.marpolbul.2014.03.022
    Glyphosate is globally a widely used herbicide, yet there is little information on their toxicity to marine fishes. Java medaka, a small tropical fish native to coastal areas in several Southeast Asian countries, is viewed as a suitable candidate for toxicity test and thus was used for this study. Java medaka adults were cultured in the laboratory and the fertilized eggs of the F2 generation were exposed to different concentrations of glyphosate-based herbicide (100, 200, 300, 400 and 500 ppm) until they hatched. The survival and hatching rates of the embryos, changes in the heart rate and morphological impairments were recorded. Generally, survival and hatching percentage decreased as glyphosate concentration increased. Absence of pectoral fin(s) and cornea, permanently bent tail, irregular shaped abdomen, and cell disruption in the fin, head and abdomen are among the common teratogenic effects observed. Furthermore, risk factor also increased with the increased in glyphosate concentrations.
    Matched MeSH terms: Toxicity Tests/methods
  3. Ismail A, Yusof S
    Mar Pollut Bull, 2011;63(5-12):347-9.
    PMID: 21377175 DOI: 10.1016/j.marpolbul.2011.02.014
    Several organisms have been used as indicators, bio-monitoring agents or test organisms in ecotoxicological studies. A close relative of the well established Japanese medaka, the Java medaka (Oryzias javanicus), has the potential to be a test organism. The fish is native to the estuaries of the Malaysian Peninsula, Thailand, Indonesia and Singapore. In this study, newly fertilised eggs were exposed to different concentrations of Cd and Hg. Observations were done on the development of the embryos. Exposure to low levels of Cd and Hg (0.01-0.05 ppm) resulted in several developmental disorders that led to death. Exposure to ≥1.0 ppm Cd resulted in immediate developmental arrest. The embryos of Java medaka showed tolerance to a certain extent when exposed to ≥1.0 ppm Hg compared to Cd. Based on the sensitivity of the embryos, Java medaka is a suitable test organism for ecotoxicology in the tropical region.
    Matched MeSH terms: Toxicity Tests/methods
  4. Budi S, Suliasih BA, Othman MS, Heng LY, Surif S
    Waste Manag, 2016 Sep;55:231-7.
    PMID: 26459190 DOI: 10.1016/j.wasman.2015.09.022
    The first phase of toxicity identification evaluation (TIE) method comprised of physic-chemical fractionation steps of pH adjustment, pH adjustment followed by filtration, aeration, extraction with solid phase C18 column (SPE), oxidant reduction with sodium thiosulphate and EDTA chelation was conducted to characterize the toxicants of a Malaysian landfill leachate. The battery of organisms test chosen were freshwater fish (Rasbora sumatrana), freshwater prawn (Macrobrachium lanchesteri) and tomato seed (Lycoperson esculentum). Toxicity reductions at each step were comparable for all test organisms. The major toxicants present in the leachate were found to be mostly basic in nature and precipitable under acidic conditions as well as containing non-polar organic compounds. A small reduction in toxicity was observed when leachate was treated with sodium thiosulphate in oxidant reduction test indicating the presence of oxidizers. The EDTA chelating step did not significantly reduce toxicity in the test organisms suggesting insignificant level of (toxic) metals.
    Matched MeSH terms: Toxicity Tests/methods*
  5. Ismail M, Phang SM, Tong SL, Brown MT
    Environ Monit Assess, 2002 Apr;75(2):145-54.
    PMID: 12002283
    Toxicity testing of four heavy metals (Cd, Cu, Mn and As) using four species of tropical marine phytoplankton, Chaetoceros calcitrans, Isochrysis galbana, Tetraselmis tetrahele and Tetraselmis sp., was carried out in multiwell plates with test volumes of 2 mL and the results compared to those of standard, large volume, shake-flasks. IC50 values (concentrations of metals estimated to inhibit 50% growth relative to the control) were determined after 96 hours based on automated O.D. readings measured in Elisa microplates by a Multiskan spectrophotometer. Good agreement was achieved between O.D. readings and cell counts indicating that this new method is a simple, economical, practical and rapid technique for toxicity testing, and provides good reproducibility of IC50 values. Results of the toxicity tests indicate that Cu was the most toxic metal (average IC50 values ranging from 0.04 to 0.37 mg L(-1)), followed by Cd (0.06-5.7 mg L(-1)), Mn (7.2-21.4 mg L(-1)) and As (33.9-319.3 mg L(-1)). Test species had different degrees of sensitivity to the metals tested, with I. galbana and C. calcitrans the most sensitive to Cu, Cd and Mn. Based on these findings it is recommended that the existing Malaysian Interim Standards for Marine Water Quality for Cd and Cu be reviewed.
    Matched MeSH terms: Toxicity Tests/methods*
  6. Abdullah R, Alhusainy W, Woutersen J, Rietjens IM, Punt A
    Food Chem Toxicol, 2016 Jun;92:104-16.
    PMID: 27016491 DOI: 10.1016/j.fct.2016.03.017
    Aristolochic acids are naturally occurring nephrotoxins. This study aims to investigate whether physiologically based kinetic (PBK) model-based reverse dosimetry could convert in vitro concentration-response curves of aristolochic acid I (AAI) to in vivo dose response-curves for nephrotoxicity in rat, mouse and human. To achieve this extrapolation, PBK models were developed for AAI in these different species. Subsequently, concentration-response curves obtained from in vitro cytotoxicity models were translated to in vivo dose-response curves using PBK model-based reverse dosimetry. From the predicted in vivo dose-response curves, points of departure (PODs) for risk assessment could be derived. The PBK models elucidated species differences in the kinetics of AAI with the overall catalytic efficiency for metabolic conversion of AAI to aristolochic acid Ia (AAIa) being 2-fold higher for rat and 64-fold higher for mouse than human. Results show that the predicted PODs generally fall within the range of PODs derived from the available in vivo studies. This study provides proof of principle for a new method to predict a POD for in vivo nephrotoxicity by integrating in vitro toxicity testing with in silico PBK model-based reverse dosimetry.
    Matched MeSH terms: Toxicity Tests/methods*
  7. Ong LC, Chung FF, Tan YF, Leong CO
    Arch Toxicol, 2016 Jan;90(1):103-18.
    PMID: 25273022 DOI: 10.1007/s00204-014-1376-6
    Carbon nanotubes (CNTs) are an important class of nanomaterials, which have numerous novel properties that make them useful in technology and industry. Generally, there are two types of CNTs: single-walled nanotubes (SWNTs) and multi-walled nanotubes. SWNTs, in particular, possess unique electrical, mechanical, and thermal properties, allowing for a wide range of applications in various fields, including the electronic, computer, aerospace, and biomedical industries. However, the use of SWNTs has come under scrutiny, not only due to their peculiar nanotoxicological profile, but also due to the forecasted increase in SWNT production in the near future. As such, the risk of human exposure is likely to be increased substantially. Yet, our understanding of the toxicological risk of SWNTs in human biology remains limited. This review seeks to examine representative data on the nanotoxicity of SWNTs by first considering how SWNTs are absorbed, distributed, accumulated and excreted in a biological system, and how SWNTs induce organ-specific toxicity in the body. The contradictory findings of numerous studies with regards to the potential hazards of SWNT exposure are discussed in this review. The possible mechanisms and molecular pathways associated with SWNT nanotoxicity in target organs and specific cell types are presented. We hope that this review will stimulate further research into the fundamental aspects of CNTs, especially the biological interactions which arise due to the unique intrinsic characteristics of CNTs.
    Matched MeSH terms: Toxicity Tests/methods
  8. Ooi L, Okazaki K, Arias-Barreiro CR, Heng LY, Mori IC
    Chemosphere, 2020 May;247:125933.
    PMID: 32079055 DOI: 10.1016/j.chemosphere.2020.125933
    Toxicity Identification Evaluation (TIE) is a useful method for the classification and identification of toxicants in a composite environment water sample. However, its extension to a larger sample size has been restrained owing to the limited throughput of toxicity bioassays. Here we reported the development of a high-throughput method of TIE Phase I. This newly developed method was assisted by the fluorescence-based cellular oxidation (CO) biosensor fabricated with roGFP2-expressing bacterial cells in 96-well microplate format. The assessment of four river water samples from Langat river basin by this new method demonstrated that the contaminant composition of the four samples can be classified into two distinct groups. The entire toxicity assay consisted of 2338 tests was completed within 12 h with a fluorescence microplate reader. Concurrently, the sample volume for each assay was reduced to 50 μL, which is 600 to 4700 times lesser to compare with conventional bioassays. These imply that the throughput of the CO biosensor-assisted TIE Phase I is now feasible for constructing a large-scale toxicity monitoring system, which would cover a whole watershed scale.
    Matched MeSH terms: Toxicity Tests/methods*
  9. Wan-Mohtar WAAQI, Ilham Z, Jamaludin AA, Rowan N
    Int J Mol Sci, 2021 Feb 07;22(4).
    PMID: 33562361 DOI: 10.3390/ijms22041675
    Natural mycelial exopolysaccharide (EPS) and endopolysaccharide (ENS) extracted from bioreactor-cultivated European Ganoderma applanatum mushrooms are of potential high commercial value for both food and adjacent biopharmaceutical industries. In order to evaluate their potential toxicity for aquaculture application, both EPS (0.01-10 mg/mL) and ENS (0.01-10 mg/mL) extracts were tested for Zebrafish Embryo Toxicity (ZFET); early development effects on Zebrafish Embryos (ZE) were also analyzed between 24 and 120 h post-fertilization (HPF). Both EPS and ENS are considered non-toxic with LC50 of 1.41 mg/mL and 0.87 mg/mL respectively. Both EPS and ENS did not delay hatching and teratogenic defect towards ZE with <1.0 mg/mL, respectively. No significant changes in the ZE heart rate were detected following treatment with the two compounds tested (EPS: 0.01-10 mg/mL: 176.44 ± 0.77 beats/min and ENS: 0.01-10 mg/mL: 148.44 ± 17.75 beats/min) compared to normal ZE (120-180 beats/min). These initial findings support future pre-clinical trials in adult fish models with view to safely using EPS and ENS as potential feed supplements for supplements for development of the aquaculture industry.
    Matched MeSH terms: Toxicity Tests/methods*
  10. Fakhlaei R, Selamat J, Abdull Razis AF, Sukor R, Ahmad S, Khatib A, et al.
    Chemosphere, 2024 May;356:141736.
    PMID: 38554873 DOI: 10.1016/j.chemosphere.2024.141736
    Since ancient times, honey has been used for medical purposes and the treatment of various disorders. As a high-quality food product, the honey industry is prone to fraud and adulteration. Moreover, limited experimental studies have investigated the impact of adulterated honey consumption using zebrafish as the animal model. The aims of this study were: (1) to calculate the lethal concentration (LC50) of acid-adulterated Apis mellifera honey on embryos, (2) to investigate the effect of pure and acid-adulterated A. mellifera honey on hatching rate (%) and heart rate of zebrafish (embryos and larvae), (3) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish and (4) to screen the metabolites profile of adulterated honey from blood serum of adult zebrafish. The result indicated the LC50 of 31.10 ± 1.63 (mg/ml) for pure A. mellifera honey, while acetic acid demonstrates the lowest LC50 (4.98 ± 0.06 mg/ml) among acid adulterants with the highest mortality rate at 96 hpf. The treatment of zebrafish embryos with adulterated A. mellifera honey significantly (p ≤ 0.05) increased the hatching rate (%) and decreased the heartbeat rate. Acute, prolong-acute, and sub-acute toxicology tests on adult zebrafish were conducted at a concentration of 7% w/w of acid adulterants. Furthermore, the blood serum metabolite profile of adulterated-honey-treated zebrafish was screened by LC-MS/MS analysis and three endogenous metabolites have been revealed: (1) Xanthotoxol or 8-Hydroxypsoralen, (2) 16-Oxoandrostenediol, and (3) 3,5-Dicaffeoyl-4-succinoylquinic acid. These results prove that employed honey adulterants cause mortality that contributes to higher toxicity. Moreover, this study introduces the zebrafish toxicity test as a new promising standard technique for the potential toxicity assessment of acid-adulterated honey in this study and hazardous food adulterants for future studies.
    Matched MeSH terms: Toxicity Tests/methods
  11. Somchit N, Chung JH, Yaacob A, Ahmad Z, Zakaria ZA, Kadir AA
    Drug Chem Toxicol, 2012 Jul;35(3):304-9.
    PMID: 22288423 DOI: 10.3109/01480545.2011.614619
    Voriconazole is a new, potent broad-spectrum triazole systemic antifungal drug, a second-generation azole antifungal that is increasing in popularity, especially for the treatment of invasive aspergillosis and fluconazole-resistant invasive Candida infections. However, it is also known to induce hepatotoxicity clinically. The aim of this study was to investigate the hepatotoxicity and nephrotoxicity potential of voriconazole in vivo in rats. Forty rats were treated intraperitoneally with voriconazole as single (0, 10, l00, and 200 mg/kg) or repeated (0, 10, 50, and l00 mg/kg per day for 14 days) doses. Venous blood was collected for the repeated-dose group on days 1 and 14. Rats were sacrificed 24 hours after the last dose. Body weight, liver weight, and kidney weight of rats were recorded. Livers and kidneys samples were taken for histological and transmission electron microscopy (TEM) analysis. Results revealed that voriconazole had no effects on serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphotase, gamma glutamyl transpeptidase, blood urea nitrogen, and creatinine for both the single- and repeated-dose groups. However, histologically, in the repeated 50- and 100-mg/kg voriconazole-treated rats, mild focal inflammation was observed. Under TEM, only small changes in the 100 mg/kg/day group were revealed. These results collectively demonstrated that voriconazole did not induce significant hepatotoxicity and nephrotoxicity, even at very high doses.
    Matched MeSH terms: Toxicity Tests/methods
  12. Abu-Bakar A, Hu H, Lang MA
    Basic Clin Pharmacol Toxicol, 2018 Sep;123 Suppl 5:72-80.
    PMID: 29788535 DOI: 10.1111/bcpt.13046
    The murine cytochrome P450 2a5 (Cyp2a5) gene is regulated by complex interactions of various stress-activated transcription factors (TFs). Elevated Cyp2a5 transcription under chemical-induced stress conditions is achieved by interplay between the various TFs - including as aryl hydrocarbon receptor (AhR) and nuclear factor (erythroid-derived 2)-like 2 wild-type (Nrf2) - at the 'stress-responding' cluster of response elements on the Cyp2a5 promoter, as well as through mRNA stabilization mediated by interaction of the stress-activated heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) with the 3'-UTR of the CYP2A5 mRNA. We designed a unique toxicity pathway-based reporter assay to include regulatory regions from both the 5' and the 3' untranslated regions of Cyp2a5 in a luciferase reporter plasmid to reflect in vivo responses to chemical insult. Human breast cancer MCF-7 cells were stably transfected with pGL4.38-Cyp2a5_Wt3k (wild-type) or mutant - pGL4.38-Cyp2a5_StREMut and pGL4.38-Cyp2a5_XREMut - reporter gene to monitor chemical-induced cellular response mediated by AhR and Nrf2 signalling. The recombinant cells were treated with representative of AhR agonist, polycyclic aromatic hydrocarbons, brominated flame retardant, fluorosurfactant, aromatic organic compound and metal, to determine the sensitivity of the Cyp2a5 promoter-based gene reporter assays to chemical insults by measuring the LC50 and EC50 of the respective chemicals. The three assays are sensitive to sublethal cellular responses of chemicals, which is an ideal feature for toxicity pathway-based bioassay for toxicity prediction. The wild-type reporter responded well to chemicals that activate crosstalk between the AhR and Nrf2, whilst the mutant reporters effectively gauge cellular response driven by either Nrf2/StRE or AhR/XRE signalling. Thus, the three gene reporter assays could be used tandemly to determine the predominant toxicity pathway of a given compound.
    Matched MeSH terms: Toxicity Tests/methods
  13. Chao CY, Mani MP, Jaganathan SK
    PLoS One, 2018;13(10):e0205699.
    PMID: 30372449 DOI: 10.1371/journal.pone.0205699
    Essential oils play an important role in reducing the pain and inflammation caused by bone fracture.In this study, a scaffold was electrospun based on polyurethane (PU), grape seed oil, honey and propolis for bone tissue-engineering applications. The fiber diameter of the electrospun PU/grape seed oil scaffold and PU/grape seed oil/honey/propolis scaffold were observed to be reduced compared to the pristine PU control. FTIR analysis revealed the existence of grape seed oil, honey and propolis in PU identified by CH band peak shift and also hydrogen bond formation. The contact angle of PU/grape seed oil scaffold was found to increase owing to hydrophobic nature and the contact angle for the PU/grape seed/honey oil/propolis scaffold were decreased because of hydrophilic nature. Further, the prepared PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold showed enhanced thermal stability and reduction in surface roughness than the control as revealed in thermogravimetric analysis (TGA) and atomic force microscopy (AFM) analysis. Further, the developed nanocomposite scaffold displayed delayed blood clotting time than the pristine PU in the activated prothrombin time (APTT) and partial thromboplastin time (PT) assay. The hemolytic assay and cytocompatibility studies revealed that the electrospun PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold possess non-toxic behaviour to red blood cells (RBC) and human fibroblast cells (HDF) cells indicating better blood compatibility and cell viability rates. Hence, the newly developed electrospun nanofibrous composite scaffold with desirable characteristics might be used as an alternative candidate for bone tissue engineering applications.
    Matched MeSH terms: Toxicity Tests/methods
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links