OBJECTIVES: To explore, map and summarize the extent of evidence from clinical studies investigating the differential expression of lncRNAs in oral/tongue squamous cell carcinoma.
METHODS: PubMed, Scopus and Web of Science were used as search engines. Clinical, full-length, English language studies were included. PRISMA-ScR protocol was used to evaluate and present results. The present scoping review summarizes relationships of the differential expression of lncRNAs with the presence of tumour and with clinicopathological features including survival.
RESULTS: Almost half of the investigated transcripts have been explored in more than one study, yet not always with consistent results. The collected data were also compared to the limited studies investigating oral epithelial dysplasia. Data are not easily comparable, first because of different methods used to define what differential expression is, and second because only a limited number of studies performed multivariate analyses to identify clinicopathological features associated with the differentially expressed lncRNAs.
CONCLUSIONS: Standard methods and more appropriate data analyses are needed in order to achieve reliable results from future studies.
OBJECTIVE: To explore the feasibility of using cyclin D1 as a prognostic marker in tongue and cheek SCC by the fluorescent-in-situ hybridization (FISH) method.
METHODS: Fifty paraffin-embedded samples (25 each of cheek and tongue SCCs) were obtained from the archives of the Oral Pathology Diagnostic Laboratory. Sociodemographic data, histopathologic diagnoses, lymph node status and survival data were obtained from the Malaysian Oral Cancer Database and Tissue Bank System (MOCDTBS)coordinated by the Oral Cancer Research and Coordinating Centre (OCRCC), University of Malaya. The FISH technique was used to detect the amplification of cyclin D1 using the Vysis protocol. Statistical correlations of cyclin D1 with site and lymph node status were analyzed using the Fisher exact test. Kaplan-Meier and Log Rank (Mantel-Cox) test were used to analyze cyclin D1 amplification and median survival time.
RESULTS: Positive amplification of cyclin D1 was detected in 72% (36) of OSCCs. Detection of positive amplification for cyclin D1 was observed in 88% (22) and 56% (14) of the tongue and cheek tumors, respectively, where the difference was statistically significant (P=0.012). Lymph node metastasis of cheek SCCs showed a trend towards a significant association (P= 0.098) with cyclin D1 amplification whereas the lymph node metastasis of tongue SCC was clearly not significant (P=0.593).There was a statistically significant correlation between cyclin D1 positivity and survival rate (P=0.009) for overall SCC cases and (P<0.001) for cheek SCC cases.
CONCLUSION: The present study found that cyclin D1 amplification may differ in different subsites of OSCC (tongue vs cheek) and its positive amplification implies an overall poor survival in OSCCs, particularly those arising in cheeks.