Displaying all 8 publications

Abstract:
Sort:
  1. Lee JWW, Chiew YS, Wang X, Tan CP, Mat Nor MB, Cove ME, et al.
    Comput Methods Programs Biomed, 2022 Feb;214:106577.
    PMID: 34936946 DOI: 10.1016/j.cmpb.2021.106577
    BACKGROUND AND OBJECTIVE: Mechanical ventilation is the primary form of care provided to respiratory failure patients. Limited guidelines and conflicting results from major clinical trials means selection of mechanical ventilation settings relies heavily on clinician experience and intuition. Determining optimal mechanical ventilation settings is therefore difficult, where non-optimal mechanical ventilation can be deleterious. To overcome these difficulties, this research proposes a model-based method to manage the wide range of possible mechanical ventilation settings, while also considering patient-specific conditions and responses.

    METHODS: This study shows the design and development of the "VENT" protocol, which integrates the single compartment linear lung model with clinical recommendations from landmark studies, to aid clinical decision-making in selecting mechanical ventilation settings. Using retrospective breath data from a cohort of 24 patients, 3,566 and 2,447 clinically implemented VC and PC settings were extracted respectively. Using this data, a VENT protocol application case study and clinical comparison is performed, and the prediction accuracy of the VENT protocol is validated against actual measured outcomes of pressure and volume.

    RESULTS: The study shows the VENT protocols' potential use in narrowing an overwhelming number of possible mechanical ventilation setting combinations by up to 99.9%. The comparison with retrospective clinical data showed that only 33% and 45% of clinician settings were approved by the VENT protocol. The unapproved settings were mainly due to exceeding clinical recommended settings. When utilising the single compartment model in the VENT protocol for forecasting peak pressures and tidal volumes, median [IQR] prediction error values of 0.75 [0.31 - 1.83] cmH2O and 0.55 [0.19 - 1.20] mL/kg were obtained.

    CONCLUSIONS: Comparing the proposed protocol with retrospective clinically implemented settings shows the protocol can prevent harmful mechanical ventilation setting combinations for which clinicians would be otherwise unaware. The VENT protocol warrants a more detailed clinical study to validate its potential usefulness in a clinical setting.

    Matched MeSH terms: Tidal Volume
  2. Wong JW, Chiew YS, Desaive T, Chase JG
    Biomed Eng Online, 2022 Feb 09;21(1):11.
    PMID: 35139858 DOI: 10.1186/s12938-022-00983-y
    BACKGROUND: Surges of COVID-19 infections have led to insufficient supply of mechanical ventilators (MV), resulting in rationing of MV care. In-parallel, co-mechanical ventilation (Co-MV) of multiple patients is a potential solution. However, due to lack of testing, there is currently no means to match ventilation requirements or patients, with no guidelines to date. In this research, we have developed a model-based method for patient matching for pressure control mode MV.

    METHODS: The model-based method uses a single-compartment lung model (SCM) to simulate the resultant tidal volume of patient pairs at a set ventilation setting. If both patients meet specified safe ventilation criteria under similar ventilation settings, the actual mechanical ventilator settings for Co-MV are determined via simulation using a double-compartment lung model (DCM). This method allows clinicians to analyse Co-MV in silico, before clinical implementation.

    RESULTS: The proposed method demonstrates successful patient matching and MV setting in a model-based simulation as well as good discrimination to avoid mismatched patient pairs. The pairing process is based on model-based, patient-specific respiratory mechanics identified from measured data to provide useful information for guiding care. Specifically, the matching is performed via estimation of MV delivered tidal volume (mL/kg) based on patient-specific respiratory mechanics. This information can provide insights for the clinicians to evaluate the subsequent effects of Co-MV. In addition, it was also found that Co-MV patients with highly restrictive respiratory mechanics and obese patients must be performed with extra care.

    CONCLUSION: This approach allows clinicians to analyse patient matching in a virtual environment without patient risk. The approach is tested in simulation, but the results justify the necessary clinical validation in human trials.

    Matched MeSH terms: Tidal Volume
  3. Wong JJM, Lee SW, Tan HL, Ma YJ, Sultana R, Mok YH, et al.
    Pediatr Crit Care Med, 2020 08;21(8):720-728.
    PMID: 32205663 DOI: 10.1097/PCC.0000000000002324
    OBJECTIVES: Reduced morbidity and mortality associated with lung-protective mechanical ventilation is not proven in pediatric acute respiratory distress syndrome. This study aims to determine if a lung-protective mechanical ventilation protocol in pediatric acute respiratory distress syndrome is associated with improved clinical outcomes.

    DESIGN: This pilot study over April 2016 to September 2019 adopts a before-and-after comparison design of a lung-protective mechanical ventilation protocol. All admissions to the PICU were screened daily for fulfillment of the Pediatric Acute Lung Injury Consensus Conference criteria and included.

    SETTING: Multidisciplinary PICU.

    PATIENTS: Patients with pediatric acute respiratory distress syndrome.

    INTERVENTIONS: Lung-protective mechanical ventilation protocol with elements on peak pressures, tidal volumes, end-expiratory pressure to FIO2 combinations, permissive hypercapnia, and permissive hypoxemia.

    MEASUREMENTS AND MAIN RESULTS: Ventilator and blood gas data were collected for the first 7 days of pediatric acute respiratory distress syndrome and compared between the protocol (n = 63) and nonprotocol groups (n = 69). After implementation of the protocol, median tidal volume (6.4 mL/kg [5.4-7.8 mL/kg] vs 6.0 mL/kg [4.8-7.3 mL/kg]; p = 0.005), PaO2 (78.1 mm Hg [67.0-94.6 mm Hg] vs 74.5 mm Hg [59.2-91.1 mm Hg]; p = 0.001), and oxygen saturation (97% [95-99%] vs 96% [94-98%]; p = 0.007) were lower, and end-expiratory pressure (8 cm H2O [7-9 cm H2O] vs 8 cm H2O [8-10 cm H2O]; p = 0.002] and PaCO2 (44.9 mm Hg [38.8-53.1 mm Hg] vs 46.4 mm Hg [39.4-56.7 mm Hg]; p = 0.033) were higher, in keeping with lung protective measures. There was no difference in mortality (10/63 [15.9%] vs 18/69 [26.1%]; p = 0.152), ventilator-free days (16.0 [2.0-23.0] vs 19.0 [0.0-23.0]; p = 0.697), and PICU-free days (13.0 [0.0-21.0] vs 16.0 [0.0-22.0]; p = 0.233) between the protocol and nonprotocol groups. After adjusting for severity of illness, organ dysfunction and oxygenation index, the lung-protective mechanical ventilation protocol was associated with decreased mortality (adjusted hazard ratio, 0.37; 95% CI, 0.16-0.88).

    CONCLUSIONS: In pediatric acute respiratory distress syndrome, a lung-protective mechanical ventilation protocol improved adherence to lung-protective mechanical ventilation strategies and potentially mortality.

    Matched MeSH terms: Tidal Volume
  4. Nam KH, Phua J, Du B, Ohshimo S, Kim HJ, Lim CM, et al.
    J Crit Care, 2024 Feb;79:154452.
    PMID: 37948944 DOI: 10.1016/j.jcrc.2023.154452
    PURPOSE: This study investigated current practices of mechanical ventilation in Asian intensive care units, focusing on tidal volume, plateau pressure, and positive end-expiratory pressure (PEEP).

    MATERIALS AND METHODS: In this multicenter cross-sectional study, data on mechanical ventilation and clinical outcomes were collected. Predictors of mortality were analyzed by univariate and multivariable logistic regression. A scoring system was generated to predict 28-day mortality.

    RESULTS: A total of 1408 patients were enrolled. In 138 patients with acute respiratory distress syndrome (ARDS), 65.9% were on a tidal volume ≤ 8 ml/kg predicted body weight (PBW), and 71.3% were on sufficient PEEP. In 1270 patients without ARDS, 88.8% were on a tidal volume ≤ 10 ml/kg PBW. A plateau pressure tidal volume ventilation and sufficient PEEP were underused in patients with ARDS. The majority of patients without ARDS were on intermediate tidal volumes. Country income, age, and severity of illness were associated with mortality.

    Matched MeSH terms: Tidal Volume
  5. Azrina, M.R., Basri, M.N., Abdul Hadi, M., Fahmi, M.L., Asmarawati, M.Y., Ariff, O.
    MyJurnal
    High frequency oscillating ventilation (HFOV) provides a rescue therapy for patients with refractory hypoxaemia in severe acute respiratory distress syndrome (ARDS). HFOV utilizes high mean airway pressures to maintain an open lung and low tidal volumes at a high frequency that allows for adequate ventilation while at the same time preventing alveolar overdistension. This seems to be an ideal lung protective ventilation strategies to prevent ventilator-induced lung injury (VILI)2. We reported a case of severe extrapulmonary ARDS secondary to acute lymphoblastic leukaemia responding to the use of HFOV.
    Matched MeSH terms: Tidal Volume
  6. Kamaruddin N, Daud F, Yusof A, Aziz ME, Rajion ZA
    PeerJ, 2019;7:e6319.
    PMID: 30697493 DOI: 10.7717/peerj.6319
    Background: Visualization and calculation of the airway dimensions are important because an increase of airway resistance may lead to life-threatening emergencies. The visualization and calculation of the airway are possible using radiography technique with their advance software. The aim of this study was to compare and to test the reliability of the measurement of the upper airway volume and minimum area using airway analysis function in two software.

    Methods: The sample consisted of 11 cone-beam computed tomography (CBCT) scans data, evaluated using the Invivo5 (Anatomage) and Romexis (version 3.8.2.R, Planmeca) software which afford image reconstruction, and airway analysis. The measurements were done twice with one week gap between the two measurements. The measurement obtained was analyzed with t-tests and intraclass correlation coefficient (ICC), with confidence intervals (CI) was set at 95%.

    Results: From the analysis, the mean reading of volume and minimum area is not significantly different between Invivo5 and Romexis. Excellent intrarater reliability values were found for the both measurement on both software, with ICC values ranging from 0.940 to 0.998.

    Discussion: The results suggested that both software can be used in further studies to investigate upper airway, thereby contributing to the diagnosis of upper airway obstructions.

    Matched MeSH terms: Tidal Volume
  7. Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura ÉA, Laranjeira LN, Paisani DM, Damiani LP, et al.
    JAMA, 2017 10 10;318(14):1335-1345.
    PMID: 28973363 DOI: 10.1001/jama.2017.14171
    Importance: The effects of recruitment maneuvers and positive end-expiratory pressure (PEEP) titration on clinical outcomes in patients with acute respiratory distress syndrome (ARDS) remain uncertain.

    Objective: To determine if lung recruitment associated with PEEP titration according to the best respiratory-system compliance decreases 28-day mortality of patients with moderate to severe ARDS compared with a conventional low-PEEP strategy.

    Design, Setting, and Participants: Multicenter, randomized trial conducted at 120 intensive care units (ICUs) from 9 countries from November 17, 2011, through April 25, 2017, enrolling adults with moderate to severe ARDS.

    Interventions: An experimental strategy with a lung recruitment maneuver and PEEP titration according to the best respiratory-system compliance (n = 501; experimental group) or a control strategy of low PEEP (n = 509). All patients received volume-assist control mode until weaning.

    Main Outcomes and Measures: The primary outcome was all-cause mortality until 28 days. Secondary outcomes were length of ICU and hospital stay; ventilator-free days through day 28; pneumothorax requiring drainage within 7 days; barotrauma within 7 days; and ICU, in-hospital, and 6-month mortality.

    Results: A total of 1010 patients (37.5% female; mean [SD] age, 50.9 [17.4] years) were enrolled and followed up. At 28 days, 277 of 501 patients (55.3%) in the experimental group and 251 of 509 patients (49.3%) in the control group had died (hazard ratio [HR], 1.20; 95% CI, 1.01 to 1.42; P = .041). Compared with the control group, the experimental group strategy increased 6-month mortality (65.3% vs 59.9%; HR, 1.18; 95% CI, 1.01 to 1.38; P = .04), decreased the number of mean ventilator-free days (5.3 vs 6.4; difference, -1.1; 95% CI, -2.1 to -0.1; P = .03), increased the risk of pneumothorax requiring drainage (3.2% vs 1.2%; difference, 2.0%; 95% CI, 0.0% to 4.0%; P = .03), and the risk of barotrauma (5.6% vs 1.6%; difference, 4.0%; 95% CI, 1.5% to 6.5%; P = .001). There were no significant differences in the length of ICU stay, length of hospital stay, ICU mortality, and in-hospital mortality.

    Conclusions and Relevance: In patients with moderate to severe ARDS, a strategy with lung recruitment and titrated PEEP compared with low PEEP increased 28-day all-cause mortality. These findings do not support the routine use of lung recruitment maneuver and PEEP titration in these patients.

    Trial Registration: clinicaltrials.gov Identifier: NCT01374022.

    Matched MeSH terms: Tidal Volume
  8. Major VJ, Chiew YS, Shaw GM, Chase JG
    Biomed Eng Online, 2018 Nov 12;17(1):169.
    PMID: 30419903 DOI: 10.1186/s12938-018-0599-9
    BACKGROUND: Mechanical ventilation is an essential therapy to support critically ill respiratory failure patients. Current standards of care consist of generalised approaches, such as the use of positive end expiratory pressure to inspired oxygen fraction (PEEP-FiO2) tables, which fail to account for the inter- and intra-patient variability between and within patients. The benefits of higher or lower tidal volume, PEEP, and other settings are highly debated and no consensus has been reached. Moreover, clinicians implicitly account for patient-specific factors such as disease condition and progression as they manually titrate ventilator settings. Hence, care is highly variable and potentially often non-optimal. These conditions create a situation that could benefit greatly from an engineered approach. The overall goal is a review of ventilation that is accessible to both clinicians and engineers, to bridge the divide between the two fields and enable collaboration to improve patient care and outcomes. This review does not take the form of a typical systematic review. Instead, it defines the standard terminology and introduces key clinical and biomedical measurements before introducing the key clinical studies and their influence in clinical practice which in turn flows into the needs and requirements around how biomedical engineering research can play a role in improving care. Given the significant clinical research to date and its impact on this complex area of care, this review thus provides a tutorial introduction around the review of the state of the art relevant to a biomedical engineering perspective.

    DISCUSSION: This review presents the significant clinical aspects and variables of ventilation management, the potential risks associated with suboptimal ventilation management, and a review of the major recent attempts to improve ventilation in the context of these variables. The unique aspect of this review is a focus on these key elements relevant to engineering new approaches. In particular, the need for ventilation strategies which consider, and directly account for, the significant differences in patient condition, disease etiology, and progression within patients is demonstrated with the subsequent requirement for optimal ventilation strategies to titrate for patient- and time-specific conditions.

    CONCLUSION: Engineered, protective lung strategies that can directly account for and manage inter- and intra-patient variability thus offer great potential to improve both individual care, as well as cohort clinical outcomes.

    Matched MeSH terms: Tidal Volume
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links