Methodology: A total of 31 thalassemic children were a part of the study. Cephalometric readings were recorded for the study and the control group.
Results: Within the Group I stage, the anterior cranial base length was 68.40±2.93 mm, shorter when compared to the control group. In the Group II stage, the maxillary/mandibular angle was 31.58° for the case group and the mandibular length was shorter in comparison to the controls. In the Group III stage, the SNB angle was 76.42°, lesser than the control group. A relative maxillary prognathism of 9.88 mm and 12.85 mm was observed in thalassemic males and females respectively through the Wiley's analysis.
Conclusion: The overall picture depicted a retruded position of the maxilla and a retrognathic mandible within the study group. A class II profile has also been observed among the study subjects.
OBJECTIVES: To assess the benefits and safety of growth hormone therapy in people with thalassaemia.
SEARCH METHODS: We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles, reviews and clinical trial registries. Our database and trial registry searches are current to 10 August 2017 and 08 August 2017, respectively.
SELECTION CRITERIA: Randomised and quasi-randomised controlled trials comparing the use of growth hormone therapy to placebo or standard care in people with thalassaemia of any type or severity.
DATA COLLECTION AND ANALYSIS: Two authors independently selected trials for inclusion. Data extraction and assessment of risk of bias were also conducted independently by two authors. The quality of the evidence was assessed using GRADE criteria.
MAIN RESULTS: One parallel trial conducted in Turkey was included. The trial recruited 20 children with homozygous beta thalassaemia who had short stature; 10 children received growth hormone therapy administered subcutaneously on a daily basis at a dose of 0.7 IU/kg per week and 10 children received standard care. The overall risk of bias in this trial was low except for the selection criteria and attrition bias which were unclear. The quality of the evidence for all major outcomes was moderate, the main concern was imprecision of the estimates due to the small sample size leading to wide confidence intervals. Final height (cm) (the review's pre-specified primary outcome) and change in height were not assessed in the included trial. The trial reported no clear difference between groups in height standard deviation (SD) score after one year, mean difference (MD) -0.09 (95% confidence interval (CI) -0.33 to 0.15 (moderate quality evidence). However, modest improvements appeared to be observed in the following key outcomes in children receiving growth hormone therapy compared to control (moderate quality evidence): change between baseline and final visit in height SD score, MD 0.26 (95% CI 0.13 to 0.39); height velocity, MD 2.28 cm/year (95% CI 1.76 to 2.80); height velocity SD score, MD 3.31 (95% CI 2.43 to 4.19); and change in height velocity SD score between baseline and final visit, MD 3.41 (95% CI 2.45 to 4.37). No adverse effects of treatment were reported in either group; however, while there was no clear difference between groups in the oral glucose tolerance test at one year, fasting blood glucose was significantly higher in the growth hormone therapy group compared to control, although both results were still within the normal range, MD 6.67 mg/dL (95% CI 2.66 to 10.68). There were no data beyond the one-year trial period.
AUTHORS' CONCLUSIONS: A small single trial contributed evidence of moderate quality that the use of growth hormone for a year may improve height velocity of children with thalassaemia although height SD score in the treatment group was similar to the control group. There are no randomised controlled trials in adults or trials that address the use of growth hormone therapy over a longer period and assess its effect on final height and quality of life. The optimal dosage of growth hormone and the ideal time to start this therapy remain uncertain. Large well-designed randomised controlled trials over a longer period with sufficient duration of follow up are needed.