Displaying all 10 publications

Abstract:
Sort:
  1. Chen CD, Lee HL
    Trop Biomed, 2006 Dec;23(2):220-3.
    PMID: 17322825 MyJurnal
    The bioefficacy of a commercial formulation of temephos, Creek against Aedes aegypti larvae was studied in the laboratory. Earthen jars were filled with 10 L tap water each. One g of temephos (Creek) sand granule formulation was added into each earthen jar as recommended by the manufacturer. The final test concentration of Creek was 1 mg a.i./L. One earthen jar was filled with 10 L tap water and served as a test control (untreated). Thirty late 3(rd) or early 4(th) instar of lab-bred Ae. aegypti larvae were added into each earthen jar. Mortality of the larvae was recorded after 24 hours and percent mortality was calculated. Test was repeated every week. The results showed that complete larval mortality was achieved after 24 hours. The residual effect lasted 15 weeks (105 days), indicating that Creek is effective at the dosage recommended by the manufacturer which is 1 mg a.i./L.
    Matched MeSH terms: Temefos/pharmacology*
  2. Wan-Norafikah O, Aliah-Diyanah S, Atiqah-Izzah Z, Chen CD, Sofian-Azirun M, Lailatul-Nadhirah A, et al.
    Exp Parasitol, 2023 Nov;254:108627.
    PMID: 37802180 DOI: 10.1016/j.exppara.2023.108627
    Temephos is the World Health Organization (WHO) recommended larvicide and is still being utilized worldwide to control larvae of dengue vectors; Aedes aegypti and Aedes albopictus. The efficacy of a commercial temephos product; Temebate® to exterminate the local populations of Ae. albopictus larvae originated from different land use particularly dengue-risk and dengue-free housing localities as well as agrarian localities including oil palm plantations, rubber estates and paddy fields was assessed to verify its bioefficacy in these localities. Field populations of Ae. albopictus larvae were attained via a larval survey at each study locality. Each Ae. albopictus larval population was subjected to a 24-h larval bioassay using Temebate® at operational dosage of 1 mg/L. Almost all Ae. albopictus larval populations demonstrated mortalities between 7.00% and 100.00% by the end of the first 4 h of Temebate® exposure with the resistance ratios between 0.94 and 8.33. After 24 h of Temebate® exposure, all sixteen Ae. albopictus larval populations exhibited increased mortalities with ten of them showing 100% mortalities. These results confirmed the relevance of Temebate® to be continuously used by the residents of these localities as their control efforts against dengue vectors. Nevertheless, Temebate® application by consumers in dengue-risk localities need to be carefully monitored to prevent further development of temephos resistance among Ae. albopictus populations and substantiated with other vector control approaches.
    Matched MeSH terms: Temefos/pharmacology
  3. Shettima A, Ishak IH, Lau B, Abu Hasan H, Miswan N, Othman N
    PLoS Negl Trop Dis, 2023 Sep;17(9):e0011604.
    PMID: 37721966 DOI: 10.1371/journal.pntd.0011604
    Synthetic insecticides are the primary vector control method used globally. However, the widespread use of insecticides is a major cause of insecticide-resistance in mosquitoes. Hence, this study aimed at elucidating permethrin and temephos-resistant protein expression profiles in Ae. aegypti using quantitative proteomics. In this study, we evaluated the susceptibility of Ae. aegypti from Penang Island dengue hotspot and non-hotspot against 0.75% permethrin and 31.25 mg/l temephos using WHO bioassay method. Protein extracts from the mosquitoes were then analysed using LC-ESI-MS/MS for protein identification and quantification via label-free quantitative proteomics (LFQ). Next, Perseus 1.6.14.0 statistical software was used to perform differential protein expression analysis using ANOVA and Student's t-test. The t-test selected proteins with≥2.0-fold change (FC) and ≥2 unique peptides for gene expression validation via qPCR. Finally, STRING software was used for functional ontology enrichment and protein-protein interactions (PPI). The WHO bioassay showed resistance with 28% and 53% mortalities in adult mosquitoes exposed to permethrin from the hotspot and non-hotspot areas. Meanwhile, the susceptibility of Ae. aegypti larvae revealed high resistance to temephos in hotspot and non-hotspot regions with 80% and 91% mortalities. The LFQ analyses revealed 501 and 557 (q-value <0.05) differentially expressed proteins in adults and larvae Ae. aegypti. The t-test showed 114 upregulated and 74 downregulated proteins in adult resistant versus laboratory strains exposed to permethrin. Meanwhile, 13 upregulated and 105 downregulated proteins were observed in larvae resistant versus laboratory strains exposed to temephos. The t-test revealed the upregulation of sodium/potassium-dependent ATPase β2 in adult permethrin resistant strain, H15 domain-containing protein, 60S ribosomal protein, and PB protein in larvae temephos resistant strain. The downregulation of troponin I, enolase phosphatase E1, glucosidase 2β was observed in adult permethrin resistant strain and tubulin β chain in larvae temephos resistant strain. Furthermore, the gene expression by qPCR revealed similar gene expression patterns in the above eight differentially expressed proteins. The PPI of differentially expressed proteins showed a p-value at <1.0 x 10-16 in permethrin and temephos resistant Ae. aegypti. Significantly enriched pathways in differentially expressed proteins revealed metabolic pathways, oxidative phosphorylation, carbon metabolism, biosynthesis of amino acids, glycolysis, and citrate cycle. In conclusion, this study has shown differentially expressed proteins and highlighted upregulated and downregulated proteins associated with insecticide resistance in Ae. aegypti. The validated differentially expressed proteins merit further investigation as a potential protein marker to monitor and predict insecticide resistance in field Ae. aegypti. The LC-MS/MS data were submitted into the MASSIVE database with identifier no: MSV000089259.
    Matched MeSH terms: Temefos/pharmacology
  4. Yap HH, Lau BL, Leong YP
    PMID: 6189198
    The toxic effects of Abate (temephos) on mosquito larvae and non-target organisms were studied in the rice-field and in the laboratory. In the laboratory tests, Culex tritaeniorhychus larvae and cladoceran zooplanktons (predominantly Diaphanosoma and Moinodaphnia species) were found to be highly susceptible to Abate with LC50 values of 0.27 and less than 0.10 parts per billion respectively. Other non-target species in decreasing degree of susceptibility to Abate were copepods (Tropodiaptomus spp.), Aplocheilus panchax and Tubifex worms. In field study, Abate at concentrations 60, 100 and 200 gm hectare-1 is effective in maintaining the rice-fields free of Anopheles and Culex mosquitoes for at least 2 days. No mortality was observed for Aplocheilus panchax and Tubifex worms at the above concentrations; nevertheless, populations of cladoceran zooplanktons and copepods were reduced up to seven days posttreatment.
    Matched MeSH terms: Temefos/pharmacology*
  5. Chen CD, Nazni WA, Lee HL, Norma-Rashid Y, Lardizabal ML, Sofian-Azirun M
    Trop Biomed, 2013 Jun;30(2):220-30.
    PMID: 23959487 MyJurnal
    Larvae of Aedes albopictus obtained from dengue endemic areas in Selangor, Malaysia were evaluated for their susceptibility to operational dosage of temephos (1 mg/L). Larval bioassays were carried out in accordance to modified WHO standard methods. Biochemical microassay of enzymes in Ae. albopictus was conducted to detect the emergence of insecticide resistance and to define the mechanisms involved in temephos resistance. The 50% mortality lethal time (LT50) for Ae. albopictus tested against temephos ranged between 58.65 to 112.50 minutes, with resistance ratio ranging from 0.75 - 1.45. This study addressed the fluctuation of time-related susceptibility status of Ae. albopictus towards insecticide. Significant difference on the weekly enzyme levels of non-specific esterases, mixed function oxidases and glutathione S-transferases was detected (p ≤ 0.05). No significant correlation was found between temephos resistance and enzyme activity (p > 0.05). Only glutathione S-transferases displayed high level of activity, indicating that Ae. albopictus may be resistant to other groups of insecticide. The insensitive acetylcholinesterase was detected in some field collected Ae. albopictus populations, indicating the possibility of emergence of carbamate or other organophosphate resistance in the field populations. Continuous resistance monitoring should be conducted regularly to confirm the efficacy of insecticides for dengue control.
    Matched MeSH terms: Temefos/pharmacology*
  6. Loke SR, Andy-Tan WA, Benjamin S, Lee HL, Sofian-Azirun M
    Trop Biomed, 2010 Dec;27(3):493-503.
    PMID: 21399591 MyJurnal
    The susceptibility status of field-collected Aedes aegypti (L.) from a dengue endemic area to Bacillus thuringiensis israelensis (Bti) and temephos was determined. Since August 2007, biweekly ovitrap surveillance (OS) was conducted for 12 mo in 2 sites, A & B, in Shah Alam, Selangor. Site A was treated with a Bti formulation, VectoBac® WG at 500 g/ha, from December 2007 - June 2008 while Site B was subjected to routine dengue vector control activities conducted by the local municipality. Aedes aegypti larvae collected from OS in both sites were bred until F3 and evaluated for their susceptibility. The larvae were pooled according to 3 time periods, which corresponded to Bti treatment phases in site A: August - November 2007 (Bti pre-treatment phase); December 2007 - June 2008 (Bti treatment phase); and July - September 2008 (Bti post-treatment phase). Larvae were bioassayed against Bti or temephos in accordance with WHO standard methods. Larvae collected from Site A was resistant to temephos, while incipient temephos resistant was detected in Site B throughout the study using WHO diagnostic dosage of 0.02 mg/L. The LC50 of temephos ranged between 0.007040 - 0.03799 mg/L throughout the year in both sites. Resistance ratios (LC50) indicated that temephos resistance increased with time, from 1.2 - 6.7 folds. The LC50 of Ae. aegypti larvae to Bti ranged between 0.08890 - 0.1814 mg/L throughout the year in both sites, showing uniform susceptibility of field larvae to Bti, in spite of Site A receiving 18 Bti treatments over a period of 7 mo. No cross-resistance of Ae. aegypti larvae from temephos to Bti was detected.
    Matched MeSH terms: Temefos/pharmacology*
  7. Chen CD, Nazni WA, Lee HL, Sofian-Azirun M
    Trop Biomed, 2005 Dec;22(2):207-16.
    PMID: 16883289 MyJurnal
    Larvae obtained from Taman Samudera (Gombak, Selangor), Kampung Banjar (Gombak, Selangor), Taman Lembah Maju (Cheras, Kuala Lumpur) and Kampung Baru (City centre, Kuala Lumpur) were bioassayed with diagnostic dosage (0.012 mg/L) and operational dosage (1 mg/L) of temephos. All strains of Aedes aegypti and Aedes albopictus showed percentage mortality in the range of 16.00 to 59.05 and 6.4 to 59.50 respectively, after 24 hours. LT50 values for the 6 strains of Ae. aegypti and Ae. albopictus were between 41.25 to 54.42 minutes and 52.67 to 141.76 minutes respectively, and the resistance ratio for both Aedes species were in the range of 0.68 to 1.82 when tested with operational dosage, 1 mg/L temephos. These results indicate that Aedes mosquitoes have developed some degree of resistance. However, complete mortality for all strains were achieved after 24 hours when tested against 1 mg/L temephos.
    Matched MeSH terms: Temefos/pharmacology*
  8. Hamdan H, Sofian-Azirun M, Nazni W, Lee HL
    Trop Biomed, 2005 Jun;22(1):45-52.
    PMID: 16880753
    Laboratory-bred females of Culex quinquefasciatus, Aedes aegypti and Aedes albopictus from the insectarium, Unit of Medical Entomology, Institute for Medical Research were used in the experiment. The late third stage of the F0 larvae which survived the high selection pressure of malathion, permethrin and temephos were reared and colonies were established from adults that emerged. Cx. quinquefasciatus larvae were subjected to selection by malathion and permethrin for 40 generations, Ae. aegypti larvae to malathion, permethrin and temephos for 32 generations and Ae. albopictus larvae were selected against malathion and permethrin for 32 generations and 20 generations against temephos. The rate of resistance development was measured by LC50 value. Cx. quinquefasciatus larvae developed higher resistance to malathion and permethrin compared to Ae. aegypti and Ae. albopictus. On the whole, permethrin resistance developed at a faster rate than malathion and temephos.
    Matched MeSH terms: Temefos/pharmacology
  9. Ong SQ, Jaal Z
    Parasit Vectors, 2015;8:28.
    PMID: 25588346 DOI: 10.1186/s13071-015-0639-2
    The trend in chemical insecticide development has focused on improving the efficacy against mosquitoes while reducing the environmental impact. Lethal lures apply an "attract-and-kill" strategy that draws the insect to the killing agent rather than bringing the killing agent to the insect.
    Matched MeSH terms: Temefos/pharmacology
  10. Chen CD, Nazni WA, Lee HL, Sofian-Azirun M
    Trop Biomed, 2005 Dec;22(2):195-206.
    PMID: 16883288 MyJurnal
    Larvae of Aedes aegypti and Aedes albopictus obtained from 6 consecutive ovitrap surveillance (OS) in Taman Samudera and Kg. Banjar were evaluated for their susceptibility to temephos. Larval bioassays were carried out in accordance with WHO standard methods, with diagnostic dosage (0.012 mg/L) and operational dosage (1 mg/L) of temephos respectively. Aedes aegypti and Ae. albopictus obtained from six OS in Taman Samudera showed resistance to diagnostic dosage of temephos with percentage mortality between 5.3 to 72.0 and 9.3 to 56.0, respectively, while Ae. aegypti and Ae. albopictus obtained from Kg. Banjar showed resistance to temephos with percentage mortality between 16.0 to 72.0 and 0 to 50.6, respectively. Only two strains of Ae. aegypti from Kg. Banjar were susceptible to temephos with 93.3% (OS 2) and 100% (OS 3) mortality. The 50% mortality at lethal time (LT50) for all strains of Ae. aegypti and Ae. albopictus tested against operational dosage of temephos showed range between 36.07 to 75.69 minutes and 58.65 to 112.50 minutes, respectively, and complete mortality was achieved after 24 hours. Our results indicated that there is weekly variations of the resistance status for Ae. aegypti and Ae. albopictus. Aedes susceptibility to temephos is changing from time to time in these two study sites. It is essential to continue monitoring the resistance of this vector to insecticides in order to ensure the efficiency of program aimed at vector control and protection of human health.
    Matched MeSH terms: Temefos/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links