Displaying publications 1 - 20 of 84 in total

Abstract:
Sort:
  1. Abbasi M, Bin Abd Latiff MS, Chizari H
    ScientificWorldJournal, 2014;2014:839486.
    PMID: 24693247 DOI: 10.1155/2014/839486
    Wireless sensor networks (WSNs) include sensor nodes in which each node is able to monitor the physical area and send collected information to the base station for further analysis. The important key of WSNs is detection and coverage of target area which is provided by random deployment. This paper reviews and addresses various area detection and coverage problems in sensor network. This paper organizes many scenarios for applying sensor node movement for improving network coverage based on bioinspired evolutionary algorithm and explains the concern and objective of controlling sensor node coverage. We discuss area coverage and target detection model by evolutionary algorithm.
    Matched MeSH terms: Remote Sensing Technology/methods*
  2. Islam MJ, Reza AW, Kausar AS, Ramiah H
    ScientificWorldJournal, 2014;2014:306270.
    PMID: 25133220 DOI: 10.1155/2014/306270
    The advent of technology with the increasing use of wireless network has led to the development of Wireless Body Area Network (WBAN) to continuously monitor the change of physiological data in a cost efficient manner. As numerous researches on wave propagation characterization have been done in intrabody communication, this study has given emphasis on the wave propagation characterization between the control units (CUs) and wireless access point (AP) in a hospital scenario. Ray tracing is a tool to predict the rays to characterize the wave propagation. It takes huge simulation time, especially when multiple transmitters are involved to transmit physiological data in a realistic hospital environment. Therefore, this study has developed an accelerated ray tracing method based on the nearest neighbor cell and prior knowledge of intersection techniques. Beside this, Red-Black tree is used to store and provide a faster retrieval mechanism of objects in the hospital environment. To prove the superiority, detailed complexity analysis and calculations of reflection and transmission coefficients are also presented in this paper. The results show that the proposed method is about 1.51, 2.1, and 2.9 times faster than the Object Distribution Technique (ODT), Space Volumetric Partitioning (SVP), and Angular Z-Buffer (AZB) methods, respectively. To show the various effects on received power in 60 GHz frequency, few comparisons are made and it is found that on average -9.44 dBm, -8.23 dBm, and -9.27 dBm received power attenuations should be considered when human, AP, and CU move in a given hospital scenario.
    Matched MeSH terms: Remote Sensing Technology/methods*
  3. Abd H, Din NM, Al-Mansoori MH, Abdullah F, Fadhil HA
    ScientificWorldJournal, 2014;2014:243795.
    PMID: 24883364 DOI: 10.1155/2014/243795
    A new approach to suppressing the four-wave mixing (FWM) crosstalk by using the pairing combinations of differently linear-polarized optical signals was investigated. The simulation was conducted using a four-channel system, and the total data rate was 40 Gb/s. A comparative study on the suppression of FWM for existing and suggested techniques was conducted by varying the input power from 2 dBm to 14 dBm. The robustness of the proposed technique was examined with two types of optical fiber, namely, single-mode fiber (SMF) and dispersion-shifted fiber (DSF). The FWM power drastically reduced to less than -68 and -25 dBm at an input power of 14 dBm, when the polarization technique was conducted for SMF and DSF, respectively. With the conventional method, the FWM powers were, respectively, -56 and -20 dBm. The system performance greatly improved with the proposed polarization approach, where the bit error rates (BERs) at the first channel were 2.57 × 10(-40) and 3.47 × 10(-29) at received powers of -4.90 and -13.84 dBm for SMF and DSF, respectively.
    Matched MeSH terms: Fiber Optic Technology/methods*
  4. Lioe de X, Shafie S, Ramiah H, Tan GH
    ScientificWorldJournal, 2014;2014:923893.
    PMID: 25133266 DOI: 10.1155/2014/923893
    This work presents the design of a low power upconversion mixer adapted in medical remote sensing such as wireless endoscopy application. The proposed upconversion mixer operates in ISM band of 433 MHz. With the carrier power of -5 dBm, the proposed mixer has an output inferred 1 dB compression point of -0.5 dBm with a corresponding output third-order intercept point (OIP3) of 7.1 dBm. The design of the upconversion mixer is realized on CMOS 0.13 μm platform, with a current consumption of 594 μA at supply voltage headroom of 1.2 V.
    Matched MeSH terms: Remote Sensing Technology/methods
  5. Darroudi M, Ahmad MB, Abdullah AH, Ibrahim NA, Shameli K
    Int J Mol Sci, 2010;11(10):3898-905.
    PMID: 21152307 DOI: 10.3390/ijms11103898
    Silver nanoparticles (Ag-NPs) were successfully synthesized in the natural polymeric matrix. Silver nitrate, gelatin, glucose, and sodium hydroxide have been used as silver precursor, stabilizer, reducing agent, and accelerator reagent, respectively. This study investigated the role of NaOH as the accelerator. The resultant products have been confirmed to be Ag-NPs using powder X-ray diffraction (PXRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The colloidal sols of Ag-NPs obtained at different volumes of NaOH show strong and different surface plasmon resonance (SPR) peaks, which can be explained from the TEM images of Ag-NPs and their particle size distribution. Compared with other synthetic methods, this work is green, rapid, and simple to use. The newly prepared Ag-NPs may have many potential applications in chemical and biological industries.
    Matched MeSH terms: Green Chemistry Technology/methods*
  6. Wu H, Sang S, Weng P, Pan D, Wu Z, Yang J, et al.
    Compr Rev Food Sci Food Saf, 2023 Nov;22(6):4217-4241.
    PMID: 37583298 DOI: 10.1111/1541-4337.13217
    Starch-based materials have viscoelasticity, viscous film-forming, dough pseudoplasticity, and rheological properties, which possess the structural characteristics (crystal structure, double helix structure, and layered structure) suitable for three-dimensional (3D) food printing inks. 3D food printing technology has significant advantages in customizing personalized and precise nutrition, expanding the range of ingredients, designing unique food appearances, and simplifying the food supply chain. Precision nutrition aims to consider individual nutritional needs and individual differences, which include special food product design and personalized precise nutrition, thus expanding future food resources, then simplifying the food supply chain, and attracting extensive attention in food industry. Different types of starch-based materials with different structures and rheological properties meet different 3D food printing technology requirements. Starch-based materials suitable for 3D food printing technology can accurately deliver and release active substances or drugs. These active substances or drugs have certain regulatory effects on the gut microbiome and diabetes, so as to maintain personalized and accurate nutrition.
    Matched MeSH terms: Food Technology/methods
  7. Mustapha T, Misni N, Ithnin NR, Daskum AM, Unyah NZ
    PMID: 35055505 DOI: 10.3390/ijerph19020674
    Silver nanoparticles are one of the most extensively studied nanomaterials due to their high stability and low chemical reactivity in comparison to other metals. They are commonly synthesized using toxic chemical reducing agents which reduce metal ions into uncharged nanoparticles. However, in the last few decades, several efforts were made to develop green synthesis methods to avoid the use of hazardous materials. The natural biomolecules found in plants such as proteins/enzymes, amino acids, polysaccharides, alkaloids, alcoholic compounds, and vitamins are responsible for the formation of silver nanoparticles. The green synthesis of silver nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. In the present review we describe the green synthesis of nanoparticles using plants, bacteria, and fungi and the role of plant metabolites in the synthesis process. Moreover, the present review also describes some applications of silver nanoparticles in different aspects such as antimicrobial, biomedicine, mosquito control, environment and wastewater treatment, agricultural, food safety, and food packaging.
    Matched MeSH terms: Green Chemistry Technology/methods
  8. Phuah ET, Lee YY, Tang TK, Akoh C, Cheong LZ, Tan CP, et al.
    Annu Rev Food Sci Technol, 2024 Jun;15(1):409-430.
    PMID: 38134384 DOI: 10.1146/annurev-food-072023-034440
    Lipid modifications play a crucial role in various fields, including food science, pharmaceuticals, and biofuel production. Traditional methods for lipid modifications involve physical and chemical approaches or enzymatic reactions, which often have limitations in terms of specificity, efficiency, and environmental impact. In recent years, nonconventional technologies have emerged as promising alternatives for lipid modifications. This review provides a comprehensive overview of nonconventional technologies for lipid modifications, including high-pressure processing, pulsed electric fields, ultrasound, ozonation, and cold plasma technology. The principles,mechanisms, and advantages of these technologies are discussed, along with their applications in lipid modification processes. Additionally, the challenges and future perspectives of nonconventional technologies in lipid modifications are addressed, highlighting the potential and challenges for further advancements in this field. The integration of nonconventional technologies with traditional methods has the potential to revolutionize lipid modifications, enabling the development of novel lipid-based products with enhanced functional properties and improved sustainability profiles.
    Matched MeSH terms: Food Technology/methods
  9. Akeiber HJ, Wahid MA, Hussen HM, Mohammad AT
    ScientificWorldJournal, 2014;2014:391690.
    PMID: 25313367 DOI: 10.1155/2014/391690
    The application of phase change materials (PCMs) in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.
    Matched MeSH terms: Technology/methods
  10. Tajdidzadeh M, Azmi BZ, Yunus WM, Talib ZA, Sadrolhosseini AR, Karimzadeh K, et al.
    ScientificWorldJournal, 2014;2014:324921.
    PMID: 25295298 DOI: 10.1155/2014/324921
    The particle size, morphology, and stability of Ag-NPs were investigated in the present study. A Q-Switched Nd: YAG pulsed laser (λ = 532 nm, 360 mJ/pulse) was used for ablation of a pure Ag plate for 30 min to prepare Ag-NPs in the organic compound such as ethylene glycol (EG) and biopolymer such as chitosan. The media (EG, chitosan) permitted the making of NPs with well dispersed and average size of Ag-NPs in EG is about 22 nm and in chitosan is about 10 nm in spherical form. Particle size, morphology, and stability of NPs were compared with distilled water as a reference. The stability of the samples was studied by measuring UV-visible absorption spectra of samples after one month. The result indicated that the formation efficiency of NPs in chitosan was higher than other media and NPs in chitosan solution were more stable than other media during one month storage. This method for synthesis of silver NPs could be as a green method due to its environmentally friendly nature.
    Matched MeSH terms: Green Chemistry Technology/methods*
  11. Sivakumar M, Tang SY, Tan KW
    Ultrason Sonochem, 2014 Nov;21(6):2069-83.
    PMID: 24755340 DOI: 10.1016/j.ultsonch.2014.03.025
    Novel nanoemulsion-based drug delivery systems (DDS) have been proposed as alternative and effective approach for the delivery of various types of poorly water-soluble drugs in the last decade. This nanoformulation strategy significantly improves the cell uptake and bioavailability of numerous hydrophobic drugs by increasing their solubility and dissolution rate, maintaining drug concentration within the therapeutic range by controlling the drug release rate, and reducing systemic side effects by targeting to specific disease site, thus offering a better patient compliance. To date, cavitation technology has emerged to be an energy-efficient and promising technique to generate such nanoscale emulsions encapsulating a variety of highly potent pharmaceutical agents that are water-insoluble. The micro-turbulent implosions of cavitation bubbles tear-off primary giant oily emulsion droplets to nano-scale, spontaneously leading to the formation of highly uniform drug contained nanodroplets. A substantial body of recent literatures in the field of nanoemulsions suggests that cavitation is a facile, cost-reducing yet safer generation tool, remarkably highlighting its industrial commercial viability in the development of designing novel nanocarriers or enhancing the properties of existing pharmaceutical products. In this review, the fundamentals of nanoemulsion and the principles involved in their formation are presented. The underlying mechanisms in the generation of pharmaceutical nanoemulsion under acoustic field as well as the advantages of using cavitation compared to the conventional techniques are also highlighted. This review focuses on recent nanoemulsion-based DDS development and how cavitation through ultrasound and hydrodynamic means is useful to generate the pharmaceutical grade nanoemulsions including the complex double or submicron multiple emulsions.
    Matched MeSH terms: Green Chemistry Technology/methods*
  12. Chong SS, Aziz AR, Harun SW
    Sensors (Basel), 2013 Jul 05;13(7):8640-68.
    PMID: 23881131 DOI: 10.3390/s130708640
    Demand for online and real-time measurements techniques to meet environmental regulation and treatment compliance are increasing. However the conventional techniques, which involve scheduled sampling and chemical analysis can be expensive and time consuming. Therefore cheaper and faster alternatives to monitor wastewater characteristics are required as alternatives to conventional methods. This paper reviews existing conventional techniques and optical and fibre optic sensors to determine selected wastewater characteristics which are colour, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). The review confirms that with appropriate configuration, calibration and fibre features the parameters can be determined with accuracy comparable to conventional method. With more research in this area, the potential for using FOS for online and real-time measurement of more wastewater parameters for various types of industrial effluent are promising.
    Matched MeSH terms: Fiber Optic Technology/methods*
  13. Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA
    Int J Nanomedicine, 2011;6:677-81.
    PMID: 21556342 DOI: 10.2147/IJN.S17669
    The application of "green" chemistry rules to nanoscience and nanotechnology is very important in the preparation of various nanomaterials. In this work, we successfully developed an eco-friendly chemistry method for preparing silver nanoparticles (Ag-NPs) in natural polymeric media. The colloidal Ag-NPs were synthesized in an aqueous solution using silver nitrate, gelatin, and glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag-NPs were studied at different reaction times. The ultraviolet-visible (UV-vis) spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The prepared samples were also characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The use of eco-friendly reagents, such as gelatin and glucose, provides green and economic attributes to this work.
    Matched MeSH terms: Green Chemistry Technology/methods*
  14. Tan KC, Lim HS, Matjafri MZ, Abdullah K
    Environ Monit Assess, 2012 Jun;184(6):3813-29.
    PMID: 21755424 DOI: 10.1007/s10661-011-2226-0
    Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.
    Matched MeSH terms: Remote Sensing Technology/methods*
  15. Zakaria A, Shakaff AY, Adom AH, Ahmad MN, Masnan MJ, Aziz AH, et al.
    Sensors (Basel), 2010;10(10):8782-96.
    PMID: 22163381 DOI: 10.3390/s101008782
    An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together.
    Matched MeSH terms: Food Technology/methods*
  16. Malekbala MR, Soltani SM, Hosseini S, Eghbali Babadi F, Malekbala R
    Crit Rev Food Sci Nutr, 2017 Sep 22;57(14):2935-2942.
    PMID: 26207585 DOI: 10.1080/10408398.2015.1020532
    During the past few years the scientific and medical community has been confronted with a continual interest in vitamin E with the interest prompted by new discoveries. Tocopherols and tocotrienols, commonly known as vitamin E, are extremely invaluable compounds and have various nutritional functionalities and benefits to human health. Great deals of research projects have been launched in order to develop effective methods for the extraction of vitamin E. By and large, three distinct extractive methods are usually employed: supercritical fluid extraction (SFE), molecular distillation, and adsorption methods. These methods are sensitive to different experimental conditions, such as pressure, temperature, and flow rate with noticeable effects on the efficiency of the extraction and enrichment of vitamin E. This review has covered the most commonly adapted extraction methods and has probed into the extraction yields under variable operational parameters.
    Matched MeSH terms: Food Technology/methods*
  17. Ibrahim S, Green RG, Dutton K, Abdul Rahim R
    ISA Trans, 2002 Jan;41(1):13-8.
    PMID: 12014798
    This paper describes a system using lensed optical fiber sensors that are arranged in the form of two orthogonal projections. The sensors are placed around a process vessel for upstream and downstream measurements. The purpose of the system is for on-line monitoring of particles and droplets being conveyed by a fluid. The lenses were constructed using a custom heating fixture. The fixture enables the lenses to be constructed with similar radii resulting in identical characteristics with minimum differences in transmitted intensity and emission angle. By collimating radiation from two halogen bulbs, radiation can be obtained by the sensors with radiation intensity related to the nature of the media. Each sensor interrogates a finite section of the measurement section. Each sensor provides a view. Parallel sensors provide a projection. Signal processing is carried out on the measured data in the time and frequency domains to investigate the latent information present in the flow signals.
    Matched MeSH terms: Fiber Optic Technology/methods
  18. Shuwandy ML, Zaidan BB, Zaidan AA, Albahri AS
    J Med Syst, 2019 Jan 06;43(2):33.
    PMID: 30612191 DOI: 10.1007/s10916-018-1149-5
    The new and groundbreaking real-time remote healthcare monitoring system on sensor-based mobile health (mHealth) authentication in telemedicine has considerably bounded and dispersed communication components. mHealth, an attractive part in telemedicine architecture, plays an imperative role in patient security and privacy and adapts different sensing technologies through many built-in sensors. This study aims to improve sensor-based defence and attack mechanisms to ensure patient privacy in client side when using mHealth. Thus, a multilayer taxonomy was conducted to attain the goal of this study. Within the first layer, real-time remote monitoring studies based on sensor technology for telemedicine application were reviewed and analysed to examine these technologies and provide researchers with a clear vision of security- and privacy-based sensors in the telemedicine area. An extensive search was conducted to find articles about security and privacy issues, review related applications comprehensively and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were investigated for articles on mHealth in telemedicine-based sensor. A total of 3064 papers were collected from 2007 to 2017. The retrieved articles were filtered according to the security and privacy of sensor-based telemedicine applications. A total of 19 articles were selected and classified into two categories. The first category, 57.89% (n = 11/19), included survey on telemedicine articles and their applications. The second category, 42.1% (n = 8/19), included articles contributed to the three-tiered architecture of telemedicine. The collected studies improved the essential need to add another taxonomy layer and review the sensor-based smartphone authentication studies. This map matching for both taxonomies was developed for this study to investigate sensor field comprehensively and gain access to novel risks and benefits of the mHealth security in telemedicine application. The literature on sensor-based smartphones in the second layer of our taxonomy was analysed and reviewed. A total of 599 papers were collected from 2007 to 2017. In this layer, we obtained a final set of 81 articles classified into three categories. The first category of the articles [86.41% (n = 70/81)], where sensor-based smartphones were examined by utilising orientation sensors for user authentication, was used. The second category [7.40% (n = 6/81)] included attack articles, which were not intensively included in our literature analysis. The third category [8.64% (n = 7/81)] included 'other' articles. Factors were considered to understand fully the various contextual aspects of the field in published studies. The characteristics included the motivation and challenges related to sensor-based authentication of smartphones encountered by researchers and the recommendations to strengthen this critical area of research. Finally, many studies on the sensor-based smartphone in the second layer have focused on enhancing accurate authentication because sensor-based smartphones require sensors that could authentically secure mHealth.
    Matched MeSH terms: Remote Sensing Technology/methods*
  19. Jumail A, Liew TS, Salgado-Lynn M, Fornace KM, Stark DJ
    Primates, 2021 Jan;62(1):143-151.
    PMID: 32572697 DOI: 10.1007/s10329-020-00837-y
    A number of primate census techniques have been developed over the past half-century, each of which have advantages and disadvantages in terms of resources required by researchers (e.g., time and costs), availability of technologies, and effectiveness in different habitat types. This study aims to explore the effectiveness of a thermal imaging technique to estimate the group size of different primate species populations in a degraded riparian forest in the Lower Kinabatangan Wildlife Sanctuary (LKWS), Sabah. We compared this survey technique to the conventional visual counting method along the riverbank. For 38 days, a total of 138 primate groups were observed by thermal camera and visually throughout the study. Optimal conditions for the thermal camera were clear weather, not more than 100 m distance from the observer to the targeted area, boat speed ranging between 5 and 12 km/h, and early morning between 04:30 and 05:30 am. The limitations of the thermal cameras include the inability to identify individual species, sexes, age classes, and also to discern between animals closely aggregated (i.e., mothers with attached infants). Despite these limitations with the thermal camera technique, 1.78 times more primates were detected than counting by eye (p 
    Matched MeSH terms: Remote Sensing Technology/methods
  20. Thung WE, Ong SA, Ho LN, Wong YS, Ridwan F, Oon YL, et al.
    J Environ Sci (China), 2018 Apr;66:295-300.
    PMID: 29628097 DOI: 10.1016/j.jes.2017.05.010
    This study demonstrated the potential of single chamber up-flow membrane-less microbial fuel cell (UFML-MFC) in wastewater treatment and power generation. The purpose of this study was to evaluate and enhance the performance under different operational conditions which affect the chemical oxygen demand (COD) reduction and power generation, including the increase of KCl concentration (MFC1) and COD concentration (MFC2). The results showed that the increase of KCl concentration is an important factor in up-flow membrane-less MFC to enhance the ease of electron transfer from anode to cathode. The increase of COD concentration in MFC2 could led to the drop of voltage output due to the prompt of biofilm growth in MFC2 cathode which could increase the internal resistance. It also showed that the COD concentration is a vital issue in up-flow membrane-less MFC. Despite the COD reduction was up to 96%, the power output remained constrained.
    Matched MeSH terms: Green Chemistry Technology/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links