Displaying all 20 publications

Abstract:
Sort:
  1. Qi Y, Montague P, Loney C, Campbell C, Shafie INF, Anderson TJ, et al.
    Eur J Neurosci, 2019 12;50(12):3896-3905.
    PMID: 31336405 DOI: 10.1111/ejn.14526
    Canine degenerative myelopathy (DM) is a progressive neurological disorder that may be considered to be a large animal model for specific forms of the fatal human disease, familial amyotrophic lateral sclerosis (fALS). DM is associated with a c118G>A mutation of the superoxide dismutase 1 (Sod1) gene, and a significant proportion of cases are inherited in an autosomal recessive manner in contrast to the largely, but not exclusively, dominant mode of inheritance in fALS. The consensus view is that these Sod1/SOD1 mutations result in a toxic gain of function but the mechanisms remain unclear. Here we used an in vitro neuroblastoma cell line transfection system to monitor wild-type and mutant forms of SOD1 fusion proteins containing either a Cherry or an enhanced green fluorescent protein (EGFP) tag. These fusion proteins retained SOD1 enzymatic activity on a native gel assay system. We demonstrate that SOD1 aggregate density is significantly higher in DM transfectants compared to wild-type. In addition, we show by co-immunoprecipitation and confocal microscopy, evidence for a potential interaction between wild-type and mutant forms of SOD1 in co-transfected cells. While in vitro studies have shown SOD1 heterodimer formation in fALS models, this is the first report for DM SOD1. Therefore, despite for the majority of cases there is a difference in the mode of inheritance between fALS and DM, a similar interaction between wild-type and mutant SOD1 forms can occur. Clarifying the role of SOD1 in DM may also be of benefit to understanding the role of SOD1 in fALS.
    Matched MeSH terms: Superoxide Dismutase/genetics*
  2. Tan HS, Liddell S, Ong Abdullah M, Wong WC, Chin CF
    J Proteomics, 2016 06 30;143:334-345.
    PMID: 27130535 DOI: 10.1016/j.jprot.2016.04.039
    Oil palm tissue culture is one way to produce superior oil palm planting materials. However, the low rate of embryogenesis is a major hindrance for the adoption of this technology in oil palm tissue culture laboratories. In this study, we use proteomic technologies to compare differential protein profiles in leaves from palms of high and low proliferation rates in tissue culture in order to understand the underlying biological mechanism for the low level of embryogenesis. Two protein extraction methods, namely trichloroacetic acid/acetone precipitation and polyethylene glycol fractionation were used to produce total proteins and fractionated protein extracts respectively, with the aim of improving the resolution of protein species using two-dimensional gel electrophoresis. A total of 40 distinct differential abundant protein spots were selected from leaf samples collected from palms with proven high and low proliferation rates. The variant proteins were subsequently identified using mass spectrometric analysis. Twelve prominent protein spots were then characterised using real-time polymerase chain reaction to compare the mRNA expression and protein abundant profiles. Three proteins, namely triosephosphate isomerase, l-ascorbate peroxidase, and superoxide dismutase were identified to be potential biomarker candidates at both the protein abundant and mRNA expression levels.

    BIOLOGICAL SIGNIFICANCE: In this study, proteomic analysis was used to identify abundant proteins from total protein extracts. PEG fractionation was used to reveal lower abundant proteins from both high and low proliferation embryogenic lines of oil palm samples in tissue culture. A total of 40 protein spots were found to be significant in abundance and the mRNA levels of 12 of these were assessed using real time PCR. Three proteins namely, triosephosphate isomerase, l-ascorbate peroxidase and superoxide dismutase were found to be concordant in their mRNA expression and protein abundance. Triosephosphate isomerase is a key enzyme in glycolysis. Both l-ascorbate peroxidase and superoxide dismutase play a role in anti-oxidative scavenging defense systems. These proteins have potential for use as biomarkers to screen for high and low embryogenic oil palm samples.

    Matched MeSH terms: Superoxide Dismutase/genetics
  3. Ahmad A, Dada AC, Usup G, Heng LY
    Mar Pollut Bull, 2014 May 15;82(1-2):26-38.
    PMID: 24725825 DOI: 10.1016/j.marpolbul.2014.03.028
    Median enterococci counts of beach water samples gradually increased at statistically significant levels (χ2: 26.53, df: 4; p<0.0001) with increasing proximity to river influx. The difference in proportion of antibiotic resistant enterococci in beach water and river water samples was statistically significant (p<0.05) for the tested antibiotics with river isolates generally presenting higher resistance frequencies. Virulence genes cyl, esp, gelE and asa were detected at varying frequencies (7.32%, 21.95%, 100% and 63.41% respectively) among river isolates. On the other hand, the prevalence of these genes was lower (0%, 20%, 67.27% and 41.82% respectively) among beach water isolates. Multi-Locus-Sequence-Typing analysis of Enterococcus faecalis presented four sequence types (ST) one of which shared six out of seven tested loci with ST6, a member of the clonal complex of multi-drug resistant strains associated with hospital outbreaks.
    Matched MeSH terms: Superoxide Dismutase/genetics
  4. Tan BH, Chor Leow T, Foo HL, Abdul Rahim R
    Biomed Res Int, 2014;2014:469298.
    PMID: 24592392 DOI: 10.1155/2014/469298
    A superoxide dismutase (SOD) gene of Lactococcus lactis M4 was cloned and expressed in a prokaryotic system. Sequence analysis revealed an open reading frame of 621 bp which codes for 206 amino acid residues. Expression of sodA under T7 promoter exhibited a specific activity of 4967 U/mg when induced with 1 mM of isopropyl-β-D-thiogalactopyranoside. The recombinant SOD was purified to homogeneity by immobilised metal affinity chromatography and Superose 12 gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analyses of the recombinant SOD detected a molecular mass of approximately 27 kDa. However, the SOD was in dimer form as revealed by gel filtration chromatography. The purified recombinant enzyme had a pI of 4.5 and exhibited maximal activity at 25°C and pH 7.2. It was stable up to 45°C. The insensitivity of this lactococcal SOD to cyanide and hydrogen peroxide established that it was a MnSOD. Although it has 98% homology to SOD of L. lactis IL1403, this is the first elucidated structure of lactococcal SOD revealing active sites containing the catalytic manganese coordinated by four ligands (H-27, H-82, D-168, and H-172).
    Matched MeSH terms: Superoxide Dismutase/genetics
  5. Abdelsalam M, Chen SC, Yoshida T
    FEMS Microbiol Lett, 2010 Jan;302(1):32-8.
    PMID: 19895643 DOI: 10.1111/j.1574-6968.2009.01828.x
    Lancefield group C Streptococcus dysgalactiae is an emerging fish pathogen, which was first isolated in 2002 in Japan. Streptococcus dysgalactiae isolates collected from diseased fish in Japan (n=12), Taiwan (n=12), China (n=2), Malaysia (n=3), and Indonesia (n=1) were characterized using biased sinusoidal field gel electrophoresis (BSFGE), sodA gene sequence analysis, and antimicrobial susceptibility. These isolates exhibited high phenotypic homogeneity irrespective of the countries from where the strains were collected. Seventeen isolates were found to be resistant to oxytetracycline and carried the tet(M) gene, except for the strains collected in Taiwan and the PP1564 strain collected in China. The sodA gene sequence analysis revealed that 23 isolates were identical, except for one Japanese isolate (KNH07902), in which a single nucleotide differed from that of the other isolates. Based on BSFGE typing by ApaI macrorestriction, the isolates - including the Japanese, Taiwanese, and Chinese isolates - could be grouped into one main cluster at a 70% similarity level. However, the macrorestriction genotypes of some isolates were apparently distinct from those of the main cluster.
    Matched MeSH terms: Superoxide Dismutase/genetics
  6. Ahmad TA, Jubri Z, Rajab NF, Rahim KA, Yusof YA, Makpol S
    Molecules, 2013 Feb 11;18(2):2200-11.
    PMID: 23434870 DOI: 10.3390/molecules18022200
    The present study was designed to determine the radioprotective effects of Malaysian Gelam honey on gene expression and enzyme activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) of human diploid fibroblasts (HDFs) subjected to gamma-irradiation. Six groups of HDFs were studied: untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/mL of sterilized Gelam honey (w/v) for 24 h and exposed to 1 Gray (Gy) of gamma rays at the dose rate of 0.25 Gy/min. Gamma-irradiation was shown to down-regulate SOD1, SOD2, CAT and GPx1 gene expressions (p < 0.05). Conversely, HDFs treated with Gelam honey alone showed up-regulation of all genes studied. Similarly, SOD, CAT and GPx enzyme activities in HDFs decreased with gamma-irradiation and increased when cells were treated with Gelam honey (p < 0.05). Furthermore, of the three different stages of study treatment, pre-treatment with Gelam honey caused up-regulation of SOD1, SOD2 and CAT genes expression and increased the activity of SOD and CAT. As a conclusion, Gelam honey modulates the expression of antioxidant enzymes at gene and protein levels in irradiated HDFs indicating its potential as a radioprotectant agent.
    Matched MeSH terms: Superoxide Dismutase/genetics
  7. Butt M, Sattar A, Abbas T, Hussain R, Ijaz M, Sher A, et al.
    PLoS One, 2021;16(11):e0257893.
    PMID: 34735478 DOI: 10.1371/journal.pone.0257893
    Climate change is causing soil salinization, resulting in huge crop losses throughout the world. Multiple physiological and biochemical pathways determine the ability of plants to tolerate salt stress. Chili (Capsicum annum L.) is a salt-susceptible crop; therefore, its growth and yield is negatively impacted by salinity. Irreversible damage at cell level and photo inhibition due to high production of reactive oxygen species (ROS) and less CO2 availability caused by water stress is directly linked with salinity. A pot experiment was conducted to determine the impact of five NaCl salinity levels, i.e., 0,1.5, 3.0, 5.0 and 7.0 dS m-1 on growth, biochemical attributes and yield of two chili genotypes ('Plahi' and 'A-120'). Salinity stress significantly reduced fresh and dry weight, relative water contents, water use efficiency, leaf osmotic potential, glycine betaine (GB) contents, photosynthetic rate (A), transpiration rate (E), stomatal conductance (Ci), and chlorophyll contents of tested genotypes. Salinity stress significantly enhanced malondialdehyde (MDA) contents and activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). In addition, increasing salinity levels significantly reduced the tissue phosphorus and potassium concentrations, while enhanced the tissue sodium and chloride concentrations. Genotype 'Plahi' had better growth and biochemical attributes compared to 'A-120'. Therefore, 'Plahi' is recommended for saline areas to improve chili production.
    Matched MeSH terms: Superoxide Dismutase/genetics
  8. Sharif R, Thomas P, Zalewski P, Fenech M
    Mol Nutr Food Res, 2015 Jun;59(6):1200-12.
    PMID: 25755079 DOI: 10.1002/mnfr.201400784
    An increased intake of Zinc (Zn) may reduce the risk of degenerative diseases but may prove to be toxic if taken in excess. This study aimed to investigate whether zinc carnosine supplement can improve Zn status, genome stability events, and Zn transporter gene expression in an elderly (65-85 years) South Australian cohort with low plasma Zn levels.
    Matched MeSH terms: Superoxide Dismutase/genetics
  9. Ng ZX, Kuppusamy UR, Iqbal T, Chua KH
    Gene, 2013 Jun 1;521(2):227-33.
    PMID: 23545311 DOI: 10.1016/j.gene.2013.03.062
    Receptor for advanced glycation end-product (RAGE) gene polymorphism 2245G/A is associated with diabetic retinopathy (DR). However, the mechanism on how it affects the disease development is still unclear.
    Matched MeSH terms: Superoxide Dismutase/genetics
  10. Ugusman A, Zakaria Z, Hui CK, Nordin NA
    PMID: 21496279 DOI: 10.1186/1472-6882-11-31
    Aqueous extract of Piper sarmentosum (AEPS) is known to possess antioxidant and anti-atherosclerotic activities but the mechanism responsible for it remains unclear. In early part of atherosclerosis, nuclear factor-kappa B (NF-κB) induces the expression of cellular adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1) and E-selectin. NADPH oxidase 4 (Nox4) is the predominant source of superoxide in the endothelial cells whereas superoxide dismutase 1 (SOD1), catalase (CAT) and glutathione peroxidase (GPx) are the antioxidant enzymes responsible for inactivating reactive oxygen species. The present study aimed to investigate the effects of AEPS on the gene expression of NF-κB, VCAM-1, ICAM-1, E-selectin, Nox4, SOD1, CAT and GPx in cultured human umbilical vein endothelial cells (HUVECs).
    Matched MeSH terms: Superoxide Dismutase/genetics
  11. Imam MU, Musa SN, Azmi NH, Ismail M
    Int J Mol Sci, 2012;13(10):12952-69.
    PMID: 23202932 DOI: 10.3390/ijms131012952
    Oxidative stress is implicated in the pathogenesis of diabetic complications, and can be increased by diet like white rice (WR). Though brown rice (BR) and germinated brown rice (GBR) have high antioxidant potentials as a result of their bioactive compounds, reports of their effects on oxidative stress-related conditions such as type 2 diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve antioxidant status, they would be better for rice consuming populations instead of the commonly consumed WR that is known to promote oxidative stress. This will then provide further reasons why less consumption of WR should be encouraged. We studied the effects of GBR on antioxidant status in type 2 diabetic rats, induced using a high-fat diet and streptozotocin injection, and also evaluated the effects of WR, BR and GBR on catalase and superoxide dismutase genes. As dietary components, BR and GBR improved glycemia and kidney hydroxyl radical scavenging activities, and prevented the deterioration of total antioxidant status in type 2 diabetic rats. Similarly, GBR preserved liver enzymes, as well as serum creatinine. There seem to be evidence that upregulation of superoxide dismutase gene may likely be an underlying mechanism for antioxidant effects of BR and GBR. Our results provide insight into the effects of different rice types on antioxidant status in type 2 diabetes. The results also suggest that WR consumption, contrary to BR and GBR, may worsen antioxidant status that may lead to more damage by free radicals. From the data so far, the antioxidant effects of BR and GBR are worth studying further especially on a long term to determine their effects on development of oxidative stress-related problems, which WR consumption predisposes to.
    Matched MeSH terms: Superoxide Dismutase/genetics
  12. Chan KW, Ismail M, Mohd Esa N, Mohamed Alitheen NB, Imam MU, Ooi J, et al.
    Oxid Med Cell Longev, 2018;2018:6742571.
    PMID: 29849908 DOI: 10.1155/2018/6742571
    The present study aimed to investigate the antioxidant and anti-inflammatory properties of defatted kenaf seed meal (DKSM) and its phenolic-saponin-rich extract (PSRE) in hypercholesterolemic rats. Hypercholesterolemia was induced using atherogenic diet feeding, and dietary interventions were conducted by incorporating DKSM (15% and 30%) or PSRE (at 2.3% and 4.6%, resp., equivalent to the total content of DKSM-phenolics and saponins in the DKSM groups) into the atherogenic diets. After ten weeks of intervention, serum total antioxidant capacities of hypercholesterolemic rats were significantly enhanced by DKSM and PSRE supplementation (p < 0.05). Similarly, DKSM and PSRE supplementation upregulated the hepatic mRNA expression of antioxidant genes (Nrf2, Sod1, Sod2, Gsr, and Gpx1) of hypercholesterolemic rats (p < 0.05), except for Gpx1 in the DKSM groups. The levels of circulating oxidized LDL and proinflammatory biomarkers were also markedly suppressed by DKSM and PSRE supplementation (p < 0.05). In aggregate, DKSM and PSRE attenuated the hypercholesterolemia-associated oxidative stress and systemic inflammation in rats, potentially by enhancement of hepatic endogenous antioxidant defense via activation of the Nrf2-ARE pathway, which may be contributed by the rich content of phenolics and saponins in DKSM and PSRE. Hence, DKSM and PSRE are prospective functional food ingredients for the potential mitigation of atherogenic risks in hypercholesterolemic individuals.
    Matched MeSH terms: Superoxide Dismutase/genetics
  13. Hou Z, Imam MU, Ismail M, Azmi NH, Ismail N, Ideris A, et al.
    Biosci Biotechnol Biochem, 2015;79(10):1570-8.
    PMID: 26057702 DOI: 10.1080/09168451.2015.1050989
    There are reports of improved redox outcomes due to consumption of Edible Bird's Nest (EBN). Many of the functional effects of EBN can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of aging and its related diseases like Alzheimer's disease. In this study, the antioxidative potentials of EBN and its constituents, lactoferrin (LF) and ovotransferrin (OVF), were determined and protective effects against hydrogen peroxide (H2O2)- induced toxicity on SH-SY5Y cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and acridine orange and propidium iodide (AO/PI) staining with microscopy were examined. Results showed that EBN and its constituents attenuated H2O2-induced cytotoxicity, and decreased radical oxygen species (ROS) through increased scavenging activity. Furthermore, LF, OVF, and EBN produced transcriptional changes in antioxidant related genes that tended towards neuroprotection as compared to H2O2-treated group. Overall, the results suggest that LF and OVF may produce synergistic or all-or-none antioxidative effects in EBN.
    Matched MeSH terms: Superoxide Dismutase/genetics
  14. Md Fuzi AA, Omar SZ, Mohamed Z, Mat Adenan NA, Mokhtar NM
    Taiwan J Obstet Gynecol, 2018 Apr;57(2):217-226.
    PMID: 29673664 DOI: 10.1016/j.tjog.2018.02.009
    OBJECTIVE: To validate the gene expression profile obtained from the previous microarray analysis and to further study the biological functions of these genes in endometrial cancer. From our previous study, we identified 621 differentially expressed genes in laser-captured microdissected endometrioid endometrial cancer as compared to normal endometrial cells. Among these genes, 146 were significantly up-regulated in endometrial cancer.

    MATERIALS AND METHODS: A total of 20 genes were selected from the list of up-regulated genes for the validation assay. The qPCR confirmed that 19 out of the 20 genes were up-regulated in endometrial cancer compared with normal endometrium. RNA interference (RNAi) was used to knockdown the expression of the upregulated genes in ECC-1 and HEC-1A endometrial cancer cell lines and its effect on proliferation, migration and invasion were examined.

    RESULTS: Knockdown of MIF, SOD2, HIF1A and SLC7A5 by RNAi significantly decreased the proliferation of ECC-1 cells (p < 0.05). Our results also showed that the knockdown of MIF, SOD2 and SLC7A5 by RNAi significantly decreased the proliferation and migration abilities of HEC-1A cells (p < 0.05). Moreover, the knockdown of SLC38A1 and HIF1A by RNAi resulted in a significant decrease in the proliferation of HEC1A cells (p < 0.05).

    CONCLUSION: We have identified the biological roles of SLC38A1, MIF, SOD2, HIF1A and SLC7A5 in endometrial cancer, which opens up the possibility of using the RNAi silencing approach to design therapeutic strategies for treatment of endometrial cancer.

    Matched MeSH terms: Superoxide Dismutase/genetics
  15. Zhang T, Dang M, Zhang W, Lin X
    J. Photochem. Photobiol. B, Biol., 2020 Jan;202:111705.
    PMID: 31812087 DOI: 10.1016/j.jphotobiol.2019.111705
    The procurance of gold nanoparticles in the plant extracts is an excellent way to attain nanomaterials natural and eco-friendly nanomaterials. The Dehydrated roots of Chinese Euphorbia fischeriana flowering plant are called "Lang-Du". In this study, the retrieving of gold nanoparticles from Euphorbia fischeriana root was amalgamated by standard procedure. Fabricated gold nanoparticles were portrayed through the investigations of ultraviolet and visible spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The UV-Vis and FTIR results explicated the obtained particles were sphere-shaped and the terpenoids of Euphorbia fischeriana had strong communications with gold surface. The HRTEM and XRD images exposed the produced gold nanoparticles had an extreme composition of crystal arrangement and excellent uniformed size of particles. In our study, the Isoprenaline induced myocardial damage established the elevation in TBARS, LOOH of heart tissues and notable decline in antioxidant enzymes SOD, CAT, GPx, and GSH. This biochemical result was additionally proved by histopathological assessment. Remarkably, the pretreatment with EF-AuNps(50 mg/kg b.w) illustrated stabilized levels of serum creatine and cardiotropins in myocardial infarcted animals. And further we understood the essential function of NF-ƙB, TNF-α, IL-6 signaling molecules and its way progression in the development of vascular tenderness.
    Matched MeSH terms: Superoxide Dismutase/genetics
  16. Islam MA, Kundu S, Hassan R
    Curr Gene Ther, 2020;19(6):376-385.
    PMID: 32141417 DOI: 10.2174/1566523220666200306092556
    Multiple Sclerosis (MS) is the most common autoimmune demyelinating disease of the Central Nervous System (CNS). It is a multifactorial disease which develops in an immune-mediated way under the influences of both genetic and environmental factors. Demyelination is observed in the brain and spinal cord leading to neuro-axonal damage in patients with MS. Due to the infiltration of different immune cells such as T-cells, B-cells, monocytes and macrophages, focal lesions are observed in MS. Currently available medications treating MS are mainly based on two strategies; i) to ease specific symptoms or ii) to reduce disease progression. However, these medications tend to induce different adverse effects with limited therapeutic efficacy due to the protective function of the blood-brain barrier. Therefore, researchers have been working for the last four decades to discover better solutions by introducing gene therapy approaches in treating MS generally by following three strategies, i) prevention of specific symptoms, ii) halt or reverse disease progression and iii) heal CNS damage by promoting remyelination and axonal repair. In last two decades, there have been some remarkable successes of gene therapy approaches on the experimental mice model of MS - experimental autoimmune encephalomyelitis (EAE) which suggests that it is not far that the gene therapy approaches would start in human subjects ensuring the highest levels of safety and efficacy. In this review, we summarised the gene therapy approaches attempted in different animal models towards treating MS.
    Matched MeSH terms: Superoxide Dismutase/genetics
  17. Ismail M, Al-Naqeep G, Chan KW
    Free Radic Biol Med, 2010 Mar 01;48(5):664-72.
    PMID: 20005291 DOI: 10.1016/j.freeradbiomed.2009.12.002
    The antioxidant activities of the thymoquinone-rich fraction (TQRF) extracted from Nigella sativa and its bioactive compound, thymoquinone (TQ), in rats with induced hypercholesterolemia were investigated. Rats were fed a semipurified diet supplemented with 1% (w/w) cholesterol and were treated with TQRF and TQ at dosages ranging from 0.5 to 1.5 g/kg and 20 to 100 mg/kg body wt, respectively, for 8 weeks. The hydroxyl radical (OH(.))-scavenging activity of plasma samples collected from experimental rats was measured by electron spin resonance. The GenomeLab Genetic Analysis System was used to study the molecular mechanism that mediates the antioxidative properties of TQRF and TQ. Plasma total cholesterol and low-density-lipoprotein cholesterol levels were significantly decreased in the TQRF- and TQ-treated rats compared to untreated rats. Feeding rats a 1% cholesterol diet for 8 weeks resulted in a significant decrease in plasma antioxidant capacity, as measured by the capacity to scavenge hydroxyl radicals. However, rats treated with TQRF and TQ at various doses showed significant inhibitory activity toward the formation of OH(.) compared to untreated rats. Upon examination of liver RNA expression levels, treatment with TQRF and TQ caused the up-regulation of the superoxide dismutase 1 (SOD1), catalase, and glutathione peroxidase 2 (GPX) genes compared to untreated rats (P<0.05). In support of this, liver antioxidant enzyme levels, including SOD1 and GPX, were also apparently increased in the TQRF- and TQ-treated rats compared to untreated rats (P<0.05). In conclusion, TQRF and TQ effectively improved the plasma and liver antioxidant capacity and enhanced the expression of liver antioxidant genes of hypercholesterolemic rats.
    Matched MeSH terms: Superoxide Dismutase/genetics
  18. John CM, Ramasamy R, Al Naqeeb G, Al-Nuaimi AH, Adam A
    Curr Med Chem, 2012;19(30):5181-6.
    PMID: 23237188
    Gestational diabetes (GD) is a common complication during pregnancy. Metabolic changes in GD affect fetal development and fetal glucose homeostasis. The present study utilized a rat model of GD to evaluate the effects of nicotinamide on diabetic parameters; antioxidant gene expression viz, superoxide dismutase (SOD) and catalase (CAT); reactive oxygen species (ROS) production by neutrophils and enhancement of lymphocyte mediated immune response. Nicotinamide (50, 100 and 200 mg/kg) was orally supplemented to gestational diabetic rats from days 6 through 20 of gestation. After GD induction, the control group had elevated glucose and reduced insulin while nicotinamide (100 & 200 mg/kg) supplementation reversed these changes. The same doses of nicotinamide upregulated mRNA expressions of SOD and CAT genes in liver but reduced the oxidative burst activity of neutrophils in response to phorbol myristate acetate (PMA), N-formyl-methionyl-leucyl-phenylalanine (FMLP) or E. coli activation. Nicotinamide (100 & 200 mg/kg) supplementation also increased expression of activated T helper (CD4+CD25+) cells and induced proliferation of splenocytes. These findings provide evidence for utilizing nicotinamide as supplement or adjunct to support existing therapeutic agents for gestational diabetes and in pregnant individuals with weakened immune systems.
    Matched MeSH terms: Superoxide Dismutase/genetics
  19. Arumugam B, Palanisamy UD, Chua KH, Kuppusamy UR
    Mol Vis, 2019;25:47-59.
    PMID: 30820141
    Purpose: Oxidative stress is implicated in the etiology of diabetes and its debilitating complications, such as diabetic retinopathy (DR). Various flavonoids have been reported to be useful in reducing DR progression. Myricetin derivatives (F2) isolated from leaf extract of Syzygium malaccense have the potential to serve as functional food as reported previously. The present study was performed with the aim of determining the antioxidant potential and protective effect of myricetin derivatives (F2) isolated from leaf extract of S. malaccense against glucose oxidase (GO)-induced hydrogen peroxide (H2O2) production that causes oxidative stress in ARPE-19 (RPE) cells.

    Methods: Antioxidant properties were assessed through various radical (DPPH, ABTS, and nitric oxide) scavenging assays and determination of total phenolic content and ferric reducing antioxidant power level. ARPE-19 cells were preincubated with samples before the addition of GO (to generate H2O2). Cell viability, change in intracellular reactive oxygen species (ROS), H2O2 levels in cell culture supernatant, and gene expression were assessed.

    Results: F2 showed higher antioxidant levels than the extract when assessed for radical scavenging activities and ferric reducing antioxidant power. F2 protected the ARPE-19 cells against GO-H2O2-induced oxidative stress by reducing the production of H2O2 and intracellular reactive oxygen species. This was achieved by the activation of nuclear factor erythroid 2-related factor 2 (Nrf2/NFE2L2) and superoxide dismutase (SOD2), as well as downregulation of nitric oxide producer (NOS2) at the transcriptional level.

    Conclusions: The results showed that myricetin derivatives from S. malaccense have the capacity to exert considerable exogenous antioxidant activities and stimulate endogenous antioxidant activities. Therefore, these derivatives have excellent potential to be developed as therapeutic agents for managing DR.

    Matched MeSH terms: Superoxide Dismutase/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links