Displaying all 12 publications

Abstract:
Sort:
  1. Nor Azah Yusof, Beyan, Appri, Md. Haron Jelas, Nor Azowa Ibrahim
    MyJurnal
    A molecularly imprinted polymer (MIP), with the ability to bind Pb(II) ion, was prepared using the non-covalent molecular imprinting methods and evaluated as a sorbent for the Pb(II) ion uptake. 4-vinylbenzoic acid was chosen as the complexing monomer. The imprinted polymer was synthesized by radical polymerization. The template (Pb(II) ions) was removed using 0.1 M HCl. As a result, the efficient adsorption was found to occur at pH 7. The result also showed the applicability of the Langmuir model for the sorption, with the maximum sorption capacity of 204.08 μg/mg.
    Matched MeSH terms: Styrenes
  2. Kong PS, Pérès Y, Wan Daud WMA, Cognet P, Aroua MK
    Front Chem, 2019;7:205.
    PMID: 31058128 DOI: 10.3389/fchem.2019.00205
    Catalytic esterification of glycerol with oleic acid (OA) was optimized over hydrophobic mesoporous zirconia-silica heterogeneous acid catalyst (ZrO2-SiO2-Me&Et-PhSO3H) and benchmarked with commercial catalysts (Aquivion and Amberlyst 15) in order to examine the effect of catalyst acidity on conversion, yield and product selectivity. The process optimisation results showed an 80% conversion with a 59.4% glycerol mono-oleate (GMO) and 34.6% glycerol dioleate (GDO) selectivities corresponding to a combined GMO and GDO selectivity of 94.8% at equimolar OA-to-glycerol ratio, 160°C reaction temperature, 5 wt% catalyst concentration with respect to the OA weight and 4 h reaction time. This work reveals that the hydrophobic and mild acidic ZrO2-SiO2-Me&Et-PhSO3H catalyst outperformed Amberlyst 15 and Aquivion with a yield of 82% and GMO selectivity of 60%. It is found that catalyst acidity is a key parameter for catalytic activity and conversion rate. Nevertheless, high acidity/acid strength reduced the product yield in the glycerol esterification of OA.
    Matched MeSH terms: Styrenes
  3. Ismail N, Nazri NK, Abdullah AA, Wan Nik WMN, Wright LJ
    Data Brief, 2021 Feb;34:106738.
    PMID: 33521179 DOI: 10.1016/j.dib.2021.106738
    Polychloropolymethylstyrene (PCMS) polymers were synthesized with clay Cloisite and without clay Cloisite and chloromethylstyrene (CMS) combine with styrene (1:1) v/v or known as copolymer and clay Cloisite by the polymerization process. The attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra of each polymer synthesized are reported. The spectra of IR shows the different value of the wavenumber and intensity for each set of different sample. The spectra can be as a reference for others to use in synthesizing this polymer and clay Cloisite for different type of application.
    Matched MeSH terms: Styrenes
  4. Kabir MZ, Roslan AA, Ridzwan NFW, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2020 Jun;38(9):2693-2703.
    PMID: 31271347 DOI: 10.1080/07391102.2019.1640133
    Molecular interaction of the 3,4-methylenedioxy-β-nitrostyrene (MNS), an inhibitor of platelet aggregation with the main transport protein, albumin from human serum (HSA) was explored using absorption, fluorescence and circular dichroism (CD) spectroscopy in combination with in silico analyses. The MNS-HSA complexation was corroborated from the fluorescence and absorption spectral results. Implication of static quenching mechanism for MNS-HSA system was predicted from the Stern-Volmer constant, KSV-temperature relationship as well as the bimolecular quenching rate constant, kq values. Stabilization of the complex was affirmed by the value of the binding constant (Ka = 0.56-1.48 × 104 M-1). Thermodynamic data revealed that the MNS-HSA association was spontaneously driven mainly through hydrophobic interactions along with van der Waal's interaction and H-bonds. These results were well supported by in silico interpretations. Far-UV and near-UV CD spectral results manifested small variations in the protein's secondary and tertiary structures, respectively, while three-dimensional fluorescence spectra displayed microenvironmental fluctuations around protein's fluorophores, upon MNS binding. Significant improvement in the protein's thermostability was evident from the temperature-stability results of MNS-bound HSA. Binding locus of MNS, as identified by competitive drug displacement findings as well as in silico analysis, was found to be located in subdomain IIA (Sudlow's site I) of the protein.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Styrenes
  5. Tan IS, Lam MK, Lee KT
    Carbohydr Polym, 2013 Apr 15;94(1):561-6.
    PMID: 23544575 DOI: 10.1016/j.carbpol.2013.01.042
    Utilization of macroalgae biomass for bioethanol production appears as an alternative source to lignocellulosic materials. In this study, for the first time, Amberlyst (TM)-15 was explored as a potential catalyst to hydrolyze carbohydrates from Eucheuma cottonii extract to simple reducing sugar prior to fermentation process. Several important hydrolysis parameters were studied for process optimization including catalyst loading (2-5%, w/v), reaction temperature (110-130°C), reaction time (0-2.5 h) and biomass loading (5.5-15.5%, w/v). Optimum sugar yield of 39.7% was attained based on the following optimum conditions: reaction temperature at 120°C, catalyst loading of 4% (w/v), 12.5% (w/v) of biomass concentration and reaction time of 1.5h. Fermentation of the hydrolysate using Saccharomyces cerevisiae produced 0.33 g/g of bioethanol yield with an efficiency of 65%. The strategy of combining heterogeneous-catalyzed hydrolysis and fermentation with S. cerevisiae could be a feasible strategy to produce bioethanol from macroalgae biomass.
    Matched MeSH terms: Styrenes/chemistry*
  6. Marniemi J, Parkki MG
    Biochem Pharmacol, 1975 Sep 01;24(17):1569-72.
    PMID: 9
    Matched MeSH terms: Styrenes/pharmacology
  7. Tooyama I, Yanagisawa D, Taguchi H, Kato T, Hirao K, Shirai N, et al.
    Ageing Res Rev, 2016 09;30:85-94.
    PMID: 26772439 DOI: 10.1016/j.arr.2015.12.008
    The formation of senile plaques followed by the deposition of amyloid-β is the earliest pathological change in Alzheimer's disease. Thus, the detection of senile plaques remains the most important early diagnostic indicator of Alzheimer's disease. Amyloid imaging is a noninvasive technique for visualizing senile plaques in the brains of Alzheimer's patients using positron emission tomography (PET) or magnetic resonance imaging (MRI). Because fluorine-19 ((19)F) displays an intense nuclear magnetic resonance signal and is almost non-existent in the body, targets are detected with a higher signal-to-noise ratio using appropriate fluorinated contrast agents. The recent introduction of high-field MRI allows us to detect amyloid depositions in the brain of living mouse using (19)F-MRI. So far, at least three probes have been reported to detect amyloid deposition in the brain of transgenic mouse models of Alzheimer's disease; (E,E)-1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB), 1,7-bis(4'-hydroxy-3'-trifluoromethoxyphenyl)-4-methoxycarbonylethyl-1,6-heptadiene3,5-dione (FMeC1, Shiga-Y5) and 6-(3',6',9',15',18',21'-heptaoxa-23',23',23'-trifluorotricosanyloxy)-2-(4'-dimethylaminostyryl)benzoxazole (XP7, Shiga-X22). This review presents the recent advances in amyloid imaging using (19)F-MRI, including our own studies.
    Matched MeSH terms: Styrenes
  8. Aryanti Abdullah, Zuriati Zakaria, Fasihuddin Ahmad, Mat-Salleh K, Laily B. Din
    The phytochemical investigation on the fruit peel of Goniothalamus scortechinii (Selayar Raja Ubat) obtained from Gunung Stong, Kelantan has resulted in the isolation of five compounds namely pinocembrine, altholactone, goniofufurone, goniotriol and goniopypyrone. Their structures were determined by extensive ultra violet (UV), infrared (IR), nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrum (GCMS) analysis.
    Matched MeSH terms: Styrenes
  9. Lee CS, Aroua MK, Wan Daud WA, Cognet P, Pérès Y, Ajeel MA
    Front Chem, 2019;7:110.
    PMID: 30931294 DOI: 10.3389/fchem.2019.00110
    In recent years, the rapid swift increase in world biodiesel production has caused an oversupply of its by-product, glycerol. Therefore, extensive research is done worldwide to convert glycerol into numerous high added-value chemicals i.e., glyceric acid, 1,2-propanediol, acrolein, glycerol carbonate, dihydroxyacetone, etc. Hydroxyl acids, glycolic acid and lactic acid, which comprise of carboxyl and alcohol functional groups, are the focus of this study. They are chemicals that are commonly found in the cosmetic industry as an antioxidant or exfoliator and a chemical source of emulsifier in the food industry, respectively. The aim of this study is to selectively convert glycerol into these acids in a single compartment electrochemical cell. For the first time, electrochemical conversion was performed on the mixed carbon-black activated carbon composite (CBAC) with Amberlyst-15 as acid catalyst. To the best of our knowledge, conversion of glycerol to glycolic and lactic acids via electrochemical studies using this electrode has not been reported yet. Two operating parameters i.e., catalyst dosage (6.4-12.8% w/v) and reaction temperature [room temperature (300 K) to 353 K] were tested. At 353 K, the selectivity of glycolic acid can reach up to 72% (with a yield of 66%), using 9.6% w/v catalyst. Under the same temperature, lactic acid achieved its highest selectivity (20.7%) and yield (18.6%) at low catalyst dosage, 6.4% w/v.
    Matched MeSH terms: Styrenes
  10. Du S, Huynh T, Lu YZ, Parker BJ, Tham SK, Thissen H, et al.
    Acta Biomater, 2024 Sep 15;186:260-274.
    PMID: 39089351 DOI: 10.1016/j.actbio.2024.07.038
    Scaffolds for bone defect treatment should ideally support vascularization and promote bone formation, to facilitate the translation into biomedical device applications. This study presents a novel approach utilizing 3D-printed water-dissolvable polyvinyl alcohol (PVA) sacrificial molds to engineer polymerized High Internal Phase Emulsion (polyHIPE) scaffolds with microchannels and distinct multiscale porosity. Two sacrificial mold variants (250 µm and 500 µm) were generated using fused deposition modeling, filled with HIPE, and subsequently dissolved to create polyHIPE scaffolds containing microchannels. In vitro assessments demonstrated significant enhancement in cell infiltration, proliferation, and osteogenic differentiation, underscoring the favorable impact of microchannels on cell behavior. High loading efficiency and controlled release of the osteogenic factor BMP-2 were achieved, with microchannels facilitating release of the growth factor. Evaluation in a mouse critical-size calvarial defect model revealed enhanced vascularization and bone formation in microchanneled scaffolds containing BMP-2. This study not only introduces an accessible method for creating multiscale porosity in polyHIPE scaffolds but also emphasizes its capability to enhance cellular infiltration, controlled growth factor release, and in vivo performance. The findings suggest promising applications in bone tissue engineering and regenerative medicine, and are expected to facilitate the translation of this type of biomaterial scaffold. STATEMENT OF SIGNIFICANCE: This study holds significance in the realm of biomaterial scaffold design for bone tissue engineering and regeneration. We demonstrate a novel method to introduce controlled multiscale porosity and microchannels into polyHIPE scaffolds, by utilizing 3D-printed water-dissolvable PVA molds. The strategy offers new possibilities for improving cellular infiltration, achieving controlled release of growth factors, and enhancing vascularization and bone formation outcomes. This microchannel approach not only marks a substantial stride in scaffold design but also demonstrates its tangible impact on enhancing osteogenic cell differentiation and fostering robust bone formation in vivo. The findings emphasize the potential of this methodology for bone regeneration applications, showcasing an interesting advancement in the quest for effective and innovative biomaterial scaffolds to regenerate bone defects.
    Matched MeSH terms: Styrenes
  11. Chien AL, Pihie AH
    J. Biochem. Mol. Biol., 2003 May 31;36(3):269-74.
    PMID: 12787481
    In the fight against cancer, novel chemotherapeutic agents are constantly being sought to complement existing drugs. Various studies have presented evidence that the apoptosis that is induced by these anticancer agents is implicated in tumor regression, and Bcl-2 family genes play a part in apoptosis following treatment with various stimuli. Here, we present data that a styrylpyrone derivative (SPD) that is extracted from the plant Goniothalamus sp. showed cytotoxic effects on the human breast cancer cell line MCF-7. SPD significantly increased apoptosis in MCF-7 cells, as visualized by phase contrast microscopy and evaluated by the Tdt-mediated dUTP nick end-labeling assay and nuclear morphology. Western blotting and immunostaining revealed up-regulation of the proapoptotic Bax protein expression. SPD, however, did not affect the expression of the anti-apoptotic protein, Bcl-2. These results, therefore, suggest SPD as a potent cytotoxic agent on MCF-7 cells by inducing apoptosis through the modulation of Bax levels.
    Matched MeSH terms: Styrenes/pharmacology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links