Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Kim J, Sambudi NS, Cho K
    J Environ Manage, 2019 Feb 01;231:788-794.
    PMID: 30419434 DOI: 10.1016/j.jenvman.2018.10.100
    Owing to their high-risk factor, many attempts have been made to remove radionuclides from water. Sr2+ ions are the target of removal by synthesized hydroxyapatite in this research. A facile method for synthesizing high-surface-area hydroxyapatite by in-situ precipitation using excess diammonium phosphate solution and without any additive was developed. The highest surface area achieved using this method was 177.00 m2/g, and the synthesized hydroxyapatite was also mesoporous. The effects of different pH, temperatures, and ion concentrations during synthesis on the properties of the hydroxyapatite were assessed, and it was found that a low temperature and high pH were optimal for synthesizing high-surface-area hydroxyapatite. The maximum strontium removal capacity of 28.51 mg/g was achieved when the pH-7.5 solution was used. This performance is competitive in comparison with previously developed synthesized materials. Synthesized hydroxyapatite could effectively remove radioactive strontium from an aqueous solution for nuclear waste management.
    Matched MeSH terms: Strontium*
  2. Mardziah CM, Sopyan I, Hamdi M, Ramesh S
    Med J Malaysia, 2008 Jul;63 Suppl A:79-80.
    PMID: 19024993
    Improvement of the mechanical properties of hydroxyapatite (HA) can be achieved by the incorporation of metal. In addition, incorporation of strontium ion into HA crystal structures has been proved effective to enhance biochemical properties of bone implant. In this research, strontium-doped HA powder was developed via a sol-gel method to produce extraordinarily fine strontium-doped HA (Sr-doped HA) powder. XRD measurement had shown that the powder contained hydroxyapatite phase only for all doping concentration except for 2%, showing that Sr atoms have suppressed the appearance of beta-TCP as the secondary phase. Morphological evaluation by FESEM measurement shows that the particles of the Sr-doped HA agglomerates are globular in shape with an average size of 1-2 microm in diameter while the primary particles have a diameter of 30-150 nm in average.
    Matched MeSH terms: Strontium/chemistry*
  3. Lim TY, Wagiran H, Hussin R, Hashim S
    Appl Radiat Isot, 2015 Aug;102:10-4.
    PMID: 25933405 DOI: 10.1016/j.apradiso.2015.04.005
    The paper presents the thermoluminescence (TL) response of strontium tetraborate glass subjected to electron irradiations at various Dy2O3 concentrations ranging from 0.00 to 1.00mol%. All glass samples exhibited single broad peak with maximum peak temperature positioned at 170-215°C. The optimum TL response was found at Dy2O3 concentration 0.75mol%. This glass showed good linearity and higher sensitivity for 7MeV compared to 6MeV electrons. Analysis of kinetic parameters showed that the glasses demonstrate second order kinetic.
    Matched MeSH terms: Strontium
  4. Taha A, Akram M, Jawad Z, Alshemary AZ, Hussain R
    Mater Sci Eng C Mater Biol Appl, 2017 Nov 01;80:93-101.
    PMID: 28866230 DOI: 10.1016/j.msec.2017.05.117
    Microwave assisted wet precipitation method was used to synthesize calcium deficient strontium doped β-tricalcium phosphate (Sr-βTCP) with a chemical formula of Ca2.96-xSrx(PO4)2. Sr-βTCP was reacted with monocalcium phosphate monohydrate [Ca(H2PO4)2.H2O, MCPM] in presence of water to furnish corresponding Sr containing brushite cement (Sr-Brc). The samples were characterized by using X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). Strontium content in the prepared samples was determined by using inductively coupled plasma optical emission spectrometry (ICP-OES). The effect of Sr2+ions on the structural, mechanical, setting properties and drug release of the cement is reported. Incorporation of Sr2+ions improved the injectability, setting time and mechanical properties of the Brc. The release profiles of antibiotics incorporated in Brc and Sr-Brc confirmed that the Sr incorporation into the Brc results in the efficient release of the antibiotics from the cement.
    Matched MeSH terms: Strontium
  5. Wu DB, Hussain S, Mak V, Lee KK
    Value Health, 2014 Nov;17(7):A382.
    PMID: 27200852 DOI: 10.1016/j.jval.2014.08.2625
    OBJECTIVES. Osteoporotic fractures are common in older adults and are often associated with high morbidity and mortality. As the incidence increases with age, it is natural that osteoporotic fractures have become a major health problem worldwide. Increasing number of patients with osteoporotic fracture will have a serious economic impact on the patient themselves and the society. The objective of this study is to study the cost-effectiveness of strontium ranelate compared to alendronate for patients with post-menopausal osteoporotic fractures in Malaysia.
    METHODS. A Markov model was developed to project clinical and economic benefits of strontium in a hypothetical cohort of patients (N=1,000) over a 5-year time horizon. This study was conducted from a payer perspective. Model parameters including transition probabilities and costs of treating fracture at various sites were Malaysia-specific. Drug costs were obtained from a public teaching hospital in Kuala Lumpur. Utilities were derived from previous literatures and efficacy data were derived from two pivotal trials, i. e. SOTI and TROPOS trials. Outcomes were presented as cost per quality-adjusted life year (QALY) gained. A discount rate of 3% was applied. Both 1-way and multivariate probabilistic sensitivity analyses were undertaken to evaluate robustness of results.
    RESULTS. Compared to alendronate, strontium could prevent 328 wrist, 192 hip, 7 vertebra and 115 multiple fractures respectively over 5 years, which was translated into 27.9 QALYs gained. Using strontium can lead to cost reduction of MYR1,416,595 (USD442,685), MYR478,257 (USD149,455), MYR22,784 (USD7,120) and MYR61,883 (USD113,088) due to reduced episodes of fractures at wrist/hip/vertebra/multiple sites respectively. The total reduction of direct medical costs of MYR2,279,519 (USD712,349) was larger than the extra drug cost, hence making strontium a cost-saving therapy.
    CONCLUSIONS. It was shown that strontium appeared to be more cost-effective compared to alendronate and hence should be recommended in the public sector in Malaysia.
    Matched MeSH terms: Strontium*
  6. Abd Aziz A, Yong KS, Ibrahim S, Pichiah S
    J Hazard Mater, 2012 Jan 15;199-200:143-50.
    PMID: 22100220 DOI: 10.1016/j.jhazmat.2011.10.069
    An enhanced ferromagnetic property, visible light active TiO(2) photocatalyst was successfully synthesized by supporting strontium ferrite (SrFe(12)O(19)) onto TiO(2) doped with nitrogen (N) and compared with N-doped TiO(2). The synthesized catalysts were further characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS), BET surface area analysis, vibrating sample magnetometer (VSM), X-ray photon spectroscopy (XPS) and visible light spectroscopy analysis for their respective properties. The XRD and EDS revealed the structural and inorganic composition of N-TiO(2) supported on SrFe(12)O(19). The supported N-TiO(2) exhibited a strong ferromagnetic property with tremendous stability against magnetic property losses. It also resulted in reduced band gap (2.8 eV) and better visible light absorption between 400 and 800 nm compared to N-doped TiO(2). The photocatalytic activity was investigated with a recalcitrant phenolic compound namely 2,4-dichlorophenol (2,4-DCP) as a model pollutant under direct bright and diffuse sunlight exposure. A complete degradation of 2,4-DCP was achieved with an initial concentration of 50mg/L for both photocatalysts in 180 min and 270 min respectively under bright sunlight. Similarly the diffuse sunlight study resulted in complete degradation for supported N-TiO(2) and >85% degradation N-TiO(2), respectively. Finally the supported photocatalyst was separated under permanent magnetic field with a mass recovery ≈ 98% for further reuse.
    Matched MeSH terms: Strontium/chemistry*
  7. Sarimin AS, Ghaffar MA, Mohamed CA
    Pak J Biol Sci, 2009 Feb 01;12(3):231-8.
    PMID: 19579951
    A study on elemental composition in the otolith of giant mudskipper, Periophthalmodon schlosseri, was done from June to October 2003. Specimens were obtained from the mangrove areas of Kuala Selangor, Sepang and Melaka in the west coast of Peninsular Malaysia. A total of 70 sagitta otoliths were analyzed to detect variation of Sr, Ba and Mg, replacing the natural chemical composition of the otolith, which is the calcium carbonate (CaCO3). The average ratio of Sr:Ca was 0.11 x 10(-4), Ba:Ca was 5.7 x 10(-3) and Mg:Ca was 0.2 x 10(-3). Strong correlation (R > 0.8) between fish body size and otolith weight ofmudskipper (p < 0.01) also found during this study.
    Matched MeSH terms: Strontium/analysis*
  8. Zeng H, Wu M, Wang HQ, Zheng JC, Kang J
    Materials (Basel), 2020 Dec 12;13(24).
    PMID: 33322841 DOI: 10.3390/ma13245686
    The magnetic and electronic properties of boron-doped SrTiO3 have been studied by first-principles calculations. We found that the magnetic ground states of B-doped SrTiO3 strongly depended on the dopant-dopant separation distance. As the dopant-dopant distance varied, the magnetic ground states of B-doped SrTiO3 can have nonmagnetic, ferromagnetic or antiferromagnetic alignment. The structure with the smallest dopant-dopant separation exhibited the lowest total energy among all configurations considered and was characterized by dimer pairs due to strong attraction. Ferromagnetic coupling was observed to be stronger when the two adjacent B atoms aligned linearly along the B-Ti-B axis, which could be associated with their local bonding structures. Therefore, the symmetry of the local structure made an important contribution to the generation of a magnetic moment. Our study also demonstrated that the O-Ti-O unit was easier than the Ti-B-Ti unit to deform. The electronic properties of boron-doped SrTiO3 tended to show semiconducting or insulating features when the dopant-dopant distance was less than 5 Å, which changed to metallic properties when the dopant-dopant distance was beyond 5 Å. Our calculated results indicated that it is possible to manipulate the magnetism and band gap via different dopant-dopant separations.
    Matched MeSH terms: Strontium
  9. Kean Ping L, Mohamed MA, Kumar Mondal A, Mohamad Taib MF, Samat MH, Berhanuddin DD, et al.
    Micromachines (Basel), 2021 Mar 24;12(4).
    PMID: 33804978 DOI: 10.3390/mi12040348
    The crystal structure, electron charge density, band structure, density of states, and optical properties of pure and strontium (Sr)-doped β-Ga2O3 were studied using the first-principles calculation based on the density functional theory (DFT) within the generalized-gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE). The reason for choosing strontium as a dopant is due to its p-type doping behavior, which is expected to boost the material's electrical and optical properties and maximize the devices' efficiency. The structural parameter for pure β-Ga2O3 crystal structure is in the monoclinic space group (C2/m), which shows good agreement with the previous studies from experimental work. Bandgap energy from both pure and Sr-doped β-Ga2O3 is lower than the experimental bandgap value due to the limitation of DFT, which will ignore the calculation of exchange-correlation potential. To counterbalance the current incompatibilities, the better way to complete the theoretical calculations is to refine the theoretical predictions using the scissor operator's working principle, according to literature published in the past and present. Therefore, the scissor operator was used to overcome the limitation of DFT. The density of states (DOS) shows the hybridization state of Ga 3d, O 2p, and Sr 5s orbital. The bonding population analysis exhibits the bonding characteristics for both pure and Sr-doped β-Ga2O3. The calculated optical properties for the absorption coefficient in Sr doping causes red-shift of the absorption spectrum, thus, strengthening visible light absorption. The reflectivity, refractive index, dielectric function, and loss function were obtained to understand further this novel work on Sr-doped β-Ga2O3 from the first-principles calculation.
    Matched MeSH terms: Strontium
  10. Ewe L, Ramli R, Lim K, Abd-Shukor R
    Sains Malaysiana, 2012;41:761-768.
    The effects of strontium doping on the electrical and magneto-transport properties of magneto resistive La0.7Ca0.28Sr0.02MnO3 at different sintering temperatures have been studied. The samples were prepared by the co-precipitation technique (COP) and sintered at 1120, 1220 and 1320 oC. XRD patterns revealed that the samples have an orthorhombic structure and the diffraction patterns can be indexed with the Pbnm space group. The insulator metal transition, TIM increased linearly from 261 K to 272 K with the increase in sintering temperature. The magnetoresistance (MR) measurements were made in magnetic fields from 0.1 to 1 T at room temperature. The percentage of MR increased with increasing of magnetic field and sintering temperature for all samples. The electrical resistivity data were fitted with several equations in the metallic (ferromagnetic) and insulator (paramagnetic) regime. The density of states at the Fermi level N(EF) and the activation energy (Ea) of electron hopping were estimated by using variable range hopping and small polaron hopping model.
    Matched MeSH terms: Strontium
  11. Dewi R, Ibrahim N, Talib I, Ibarahim Z
    Sains Malaysiana, 2008;37:233-237.
    Thin films of barium strontium titanate (Ba0.6Sr0.4TiO3) perovskite system are promising candidates for microelectronic devices that can be integrated with semiconductor technology. Ba0.6Sr0.4TiO3 thin films have been prepared onto BST/TiO2/RuO2/SiO2/Si substrate using the spin coating and sol-gel process. Then the samples were subsequently annealed at 600oC, 650oC and 700oC for 60 minutes in air. The microstructure and dielectric properties show that the crystallization improved as the annealing temperature was increased. All of the films have nanometer grain size. The average grain size of the films increased as the temperature was increased. The dielectric constant and ac conductivity of the films also increased as the average grain size increased. These results showed that the microstructure and dielectric properties depend on the annealing temperature.
    Matched MeSH terms: Strontium
  12. Arai T, Chino N
    J Fish Biol, 2019 May;94(5):752-758.
    PMID: 30847927 DOI: 10.1111/jfb.13952
    Fish movements between aquatic habitats of different salinity ranges (fresh, estuarine, marine) by the tropical catadromous eels Anguilla bicolor bicolor and A. bicolor pacifica were examined by analysing the otolith strontium and calcium concentrations of yellow (immature) and silver (mature) stage eels collected in south-east Asian (Indonesia, Malaysia and Vietnam) waters. The ratios suggest that all migratory-type eels, including freshwater, brackish water and marine residents, pass the river mouth. However, the habitat preference was different among the sites (countries). In Indonesia and Vietnam, most A. bicolor bicolor and A. bicolor pacifica were either marine or brackish water residents in this study. Alternatively, most A. bicolor bicolor were freshwater residents in Malaysia; such a typical catadromous migration pattern in these eels has not been found in previous studies. The wide range of otolith Sr:Ca in both subspecies indicates that the habitat use of these tropical eels was opportunistic among fresh, brackish and marine waters during their growth phases following recruitment to coastal areas. The geographical variability of migratory histories suggests that habitat use might be determined by the inter and intraspecific competition and environmental conditions at each site.
    Matched MeSH terms: Strontium/analysis; Strontium/metabolism
  13. Iqbal MZ, Khan A, Numan A, Haider SS, Iqbal J
    Ultrason Sonochem, 2019 Dec;59:104736.
    PMID: 31473424 DOI: 10.1016/j.ultsonch.2019.104736
    An upsurge in sustainable energy demands has ultimately made supercapattery one of the important choice for energy storage, owing to highly advantageous energy density and long life span. In this work, novel strontium based mixed phased nanostructures were synthesized by using probe sonicator with sonication power 500 W at frequency of 20 kHz. The synthesized material was subsequently calcined at different temperature ranging from 200 to 800 °C. Structural and morphological analysis of the synthesized materials reveals the formation of mixed particle and rod like nanostructures with multiple crystal phases of strontium oxides and carbonates. Crystallinity, grain size and morphology of grown nanomaterials significantly improved with the increase of calcination temperature due to sufficient particle growth and low agglomeration. The electrochemical performance analysis confirms the redox activeness of the Sr-based electrode materials. Material calcined at 600 °C show high specific capacitance of 350 F g-1 and specific capacity of 175 C g-1 at current density of 0.3 A g-1 due to less particle agglomeration, good charge transfer and more contribution of electrochemical active sites for redox reactions. In addition, the developed supercapattery of Sr-based nanomaterials//activated carbon demonstrated high performance with maximum energy density of 21.8 Wh kg-1 and an excellent power density of 2400 W kg-1 for the lower and higher current densities. Furthermore, the supercapattery retain 87% of its capacity after continuous 3000 charge/discharge cycles. The device characteristics were further investigated by analyzing the capacitive and diffusion controlled contributions. The versatile strategy of developing mixed phased nanomaterials pave the way to synthesize other transition metal based nanomaterials with superior electrochemical performance for hybrid energy storage devices.
    Matched MeSH terms: Strontium
  14. Bakar, M. S. A., Ahmad, S., Muchtar, A., Rahman, H. A .
    MyJurnal
    Solid oxide fuel cells (SOFC) are efficient and clean power generation devices. Lowtemperature
    SOFC (LTSOFC) has been developed since high-temperature SOFC (HTSOFC) is not
    feasible to be commercialized due to cost. Lowering the operation temperature reduces its substantial
    performance resulting from cathode polarization resistance and overpotential of cathode. The
    development of composite cathodes regarding mixed ionic-electronic conductor (MIEC) and ceriabased
    materials for LTSOFC minimizes the problems significantly and leads to an increase in
    electrocatalytic activity for the occurrence of oxygen reduction reaction (ORR). Lanthanum-based
    materials such as lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ) have been discovered
    recently, which offer great compatibility with ceria-based electrolyte to be applied as composite
    cathode materials for LTSOFC. Cell performance at lower operating temperature can be maintained
    and further improved by enhancing the ORR. This paper reviews recent development of various ceriabased
    composite cathodes especially related to the ceria-carbonate composite electrolytes for
    LTSOFC. The influence of the addition of metallic elements such as silver (Ag), platinum (Pt) and
    palladium (Pd) towards the electrochemical properties and performance of LSCF composite cathodes
    are also discussed.
    Matched MeSH terms: Strontium
  15. Liao X, Zhang Y, Wang J, Kang J, Zhang J, Wang J, et al.
    Materials (Basel), 2019 Nov 09;12(22).
    PMID: 31717524 DOI: 10.3390/ma12223698
    The tunability of semi-conductivity in SrTiO3 single crystal substrates has been realized by a simple encapsulated annealing method under argon atmosphere. This high temperature annealing-induced property changes are characterized by the transmission spectra, scanning electron microscopy (SEM) and synchrotron-based X-ray absorption (XAS). We find the optical property is strongly influenced by the annealing time (with significant decrease of transmittance). A sub gap absorption at ~427 nm is detected which is attributed to the introduction of oxygen vacancy. Interestingly, in the SEM images, annealing-induced regularly rectangle nano-patterns are directly observed which is contributed to the conducting filaments. The XAS of O K-edge spectra shows the changes of electronic structure by annealing. Very importantly, resistance switching response is displayed in the annealed SrTiO3 single crystal. This suggests a possible simplified route to tune the conductivity of SrTiO3 and further develop novel resistance switching materials.
    Matched MeSH terms: Strontium
  16. Ahmad A, Othman I, Md Zain AZ, Chowdhury EH
    Curr Drug Deliv, 2015;12(2):210-22.
    PMID: 22452407
    Diabetes mellitus is a chronic disease accompanied by a multitude of problems worldwide with subcutaneously administered insulin being the most common therapy currently. Controlledrelease insulin is assumed to be of high importance for long-term glycaemic control by reducing the number of daily injections. Long-acting insulin also mimics the basal insulin levels in normal individuals that may be lacking in diabetic patients. Nanoparticles of carbonate apatite as established for efficient intracellular transport of DNA and siRNA have the potential to be used for sustained release of insulin as responsive nano-carriers. The flexibility in the synthesis of the particles over a wide range of pHs with eventual adjustment of pH-dependent particle dissolution and the manageable variability of particle-integrity by incorporating selective ions into the apatite structure are the promising features that could help in the development of sustained release formulations for insulin. In particular strontium-incorporated carbonate apatite particles were formulated and compared with those of unsubstituted apatite in the context of insulin binding and subsequent release kinetics in DMEM, simulated buffer and finally human blood over a period of 20 hours. Clearly, the former demonstated to have a stronger electrostatic affinity towards the acidic insulin molecules and facilitate to some extent sustained release of insulin by preventing the initial burst effect at physiological pH in comparison with the latter. Thus, our findings suggest that optimization of the carbonate apatite particle composition and structure would serve to design an ideal insulin nano-carrier with a controlled release profile.
    Matched MeSH terms: Strontium/chemistry*
  17. Ab-Ghani Z, Ngo H, McIntyre J
    Aust Dent J, 2007 Dec;52(4):276-81.
    PMID: 18265682
    BACKGROUND: There have been cononcerns about the dissolution of conventional glass ionomer cement (GIC) and its possible degradation when exposed to an acidic environment over time. The objective of this study was to investigate the effects of exposure of Fuji IX Fast to the simulated acidic aspects of the oral environment in terms of any change in the elemental composition of strontium (Sr), phosphorus (P), calcium (Ca) and fluorine (F) which resulted at the surface of this material.

    METHODS: Sixty-five cylindrical block of Fuji IX Fast were prepared using split moulds. The demineralizing solution was an acetate buffered demineralizing solution at pH 403. The remineralizing solution was a buffered solution containing 1.5 mM Ca, 0.9 mM P and 10 ppm F at pH 7. The blocks of Fuji IX Fast were subjected either to two-day alternating cycles of remineralization and demineralization for up to 24 days (test); 6 two-day cycles of demineralizing or remineralizing solution separately, or deionized distilled water alone (controls) or were left untreated (base line control). Mineral profiles of Ca, P, Sr and F within 100 microm of the material surface were assessed following 8, 16 and 24 days of treatment (test); 4, 8 or 12 days (controls) or for baseline control samples, using electron probe microanalysis (EPMA).

    RESULTS: There were significant changes in mineral profile in the test specimens in terms of Sr and Ca concentrations. A molecule for molecule exchange of these elements resulted between GIC and eluant solutions. Fluoride loss from the GIC occurredto the level comparable with uptake levels recorded in eluant solutions from previous studies. The ionic exchanges appeared to be the result of dissolution followed by an equilibrium-driven diffusion. These exchanges were superficial though substantial.

    CONCLUSIONS: Simulated exposure of Fuji IX to the oral environment resulted in an exchange of Ca from the bathing solutions into Fuji IX to replace any Sr which was lost to the GIC. Fluorine loss from the GIC followed previously described patterns. The possible clinical significance of this exchange was discussed.

    Matched MeSH terms: Strontium/analysis
  18. Sarvesvaran R
    Malays J Pathol, 1992 Dec;14(2):77-83.
    PMID: 1304628
    A body recovered from the water does not necessarily imply that death was due to drowning. The diagnosis of drowning is discussed together with the significance of the "diatom" and biochemical tests.
    Matched MeSH terms: Strontium/blood
  19. Nasir N, Yahya N, Kashif M, Daud H, Akhtar MN, Zaid HM, et al.
    J Nanosci Nanotechnol, 2011 Mar;11(3):2551-4.
    PMID: 21449424
    This is our initial response towards preparation of nano-inductors garnet for high operating frequencies strontium iron garnet (Sr3Fe5O12) denoted as SrIG and yttrium iron garnet (Y3Fe5O12) denoted as YIG. The garnet nano crystals were prepared by novel sol-gel technique. The phase and crystal structure of the prepared samples were identified by using X-ray diffraction analysis. SEM images were done to reveal the surface morphology of the samples. Raman spectra was taken for yttrium iron garnet (Y3Fe5O12). The magnetic properties of the samples namely initial permeability (micro), relative loss factor (RLF) and quality factor (Q-Factor) were done by using LCR meter. From the XRD profile, both of the Y3Fe5O12 and Sr3Fe5O12 samples showed single phase garnet and crystallization had completely occurred at 900 degrees C for the SrIG and 950 degrees C for the YIG samples. The YIG sample showed extremely low RLF value (0.0082) and high density 4.623 g/cm3. Interesting however is the high Q factor (20-60) shown by the Sr3Fe5O12 sample from 20-100 MHz. This high performance magnetic property is attributed to the homogenous and cubical-like microstructure. The YIG particles were used as magnetic feeder for EM transmitter. It was observed that YIG magnetic feeder with the EM transmitter gave 39% higher magnetic field than without YIG magnetic feeder.
    Matched MeSH terms: Strontium/chemistry*
  20. Arai T, Chai IJ, Iizuka Y, Chang CW
    Sci Rep, 2020 10 09;10(1):16890.
    PMID: 33037236 DOI: 10.1038/s41598-020-72788-9
    Anguillid eels of the genus Anguilla, which have a unique catadromous life history, are widely distributed across many parts of the world. However, little research has been conducted on the behavioural mechanisms of habitat segregation between sympatric species in tropical anguillid eels. To understand the ecological and behavioural mechanisms involved in the life history and migration of tropical anguillid eels, strontium (Sr):calcium (Ca) ratios were examined in otoliths of A. bengalensis bengalensis (41 specimens) and A. bicolor bicolor (130 specimens) collected from ten rivers in northwestern Peninsular Malaysia. The otolith Sr:Ca ratios revealed different habitat use between the two species. The broad range of otolith Sr:Ca ratios and habitat shift found in A. bicolor bicolor suggested that its habitat utilization was opportunistic in environments of varying salinity. A. bicolor bicolor prefers to live in the midstream to downstream areas with tidal influences. A. bengalensis bengalensis, however, was found to only reside in freshwater environments throughout their continental growth. A. bengalensis bengalensis tends to live in upstream area with no tidal influence. Their habitat use, migratory history, and habitat distribution indicate that habitat segregation occurs between the two species, leading to the different habitat preferences in tropical river systems.
    Matched MeSH terms: Strontium/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links