Displaying publications 1 - 20 of 122 in total

Abstract:
Sort:
  1. Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R
    Cytotherapy, 2016 Jan;18(1):13-24.
    PMID: 26631828 DOI: 10.1016/j.jcyt.2015.10.008
    The unique properties of mesenchymal stromal/stem cells (MSCs) to self-renew and their multipotentiality have rendered them attractive to researchers and clinicians. In addition to the differentiation potential, the broad repertoire of secreted trophic factors (cytokines) exhibiting diverse functions such as immunomodulation, anti-inflammatory activity, angiogenesis and anti-apoptotic, commonly referred to as the MSC secretome, has gained immense attention in the past few years. There is enough evidence to show that the one important pathway by which MSCs participate in tissue repair and regeneration is through its secretome. Concurrently, a large body of MSC research has focused on characterization of the MSC secretome; this includes both soluble factors and factors released in extracellular vesicles, for example, exosomes and microvesicles. This review provides an overview of our current understanding of the MSC secretome with respect to their potential clinical applications.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology
  2. Nam HY, Pingguan-Murphy B, Amir Abbas A, Mahmood Merican A, Kamarul T
    Biomech Model Mechanobiol, 2015 Jun;14(3):649-63.
    PMID: 25351891 DOI: 10.1007/s10237-014-0628-y
    It has been previously demonstrated that mechanical stimuli are important for multipotent human bone marrow-derived mesenchymal stromal cells (hMSCs) to maintain good tissue homeostasis and even to enhance tissue repair processes. In tendons, this is achieved by promoting the cellular proliferation and tenogenic expression/differentiation. The present study was conducted to determine the optimal loading conditions needed to achieve the best proliferation rates and tenogenic differentiation potential. The effects of mechanical uniaxial stretching using different rates and strains were performed on hMSCs cultured in vitro. hMSCs were subjected to cyclical uniaxial stretching of 4, 8 or 12 % strain at 0.5 or 1 Hz for 6, 24, 48 or 72 h. Cell proliferation was analyzed using alamarBlue[Formula: see text] assay, while hMSCs differentiation was analyzed using total collagen assay and specific tenogenic gene expression markers (type I collagen, type III collagen, decorin, tenascin-C, scleraxis and tenomodulin). Our results demonstrate that the highest cell proliferation is observed when 4 % strain [Formula: see text] 1 Hz was applied. However, at 8 % strain [Formula: see text] 1 Hz loading, collagen production and the tenogenic gene expression were highest. Increasing strain or rates thereafter did not demonstrate any significant increase in both cell proliferation and tenogenic differentiation. In conclusion, our results suggest that 4 % [Formula: see text] 1 Hz cyclic uniaxial loading increases cell proliferation, but higher strains are required for superior tenogenic expressions. This study suggests that selected loading regimes will stimulate tenogenesis of hMSCs.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  3. Balaji Raghavendran HR, Puvaneswary S, Talebian S, Murali MR, Raman Murali M, Naveen SV, et al.
    PLoS One, 2014;9(8):e104389.
    PMID: 25140798 DOI: 10.1371/journal.pone.0104389
    A comparative study on the in vitro osteogenic potential of electrospun poly-L-lactide/hydroxyapatite/collagen (PLLA/HA/Col, PLLA/HA, and PLLA/Col) scaffolds was conducted. The morphology, chemical composition, and surface roughness of the fibrous scaffolds were examined. Furthermore, cell attachment, distribution, morphology, mineralization, extracellular matrix protein localization, and gene expression of human mesenchymal stromal cells (hMSCs) differentiated on the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA were also analyzed. The electrospun scaffolds with a diameter of 200-950 nm demonstrated well-formed interconnected fibrous network structure, which supported the growth of hMSCs. When compared with PLLA/H%A and PLLA/Col scaffolds, PLLA/Col/HA scaffolds presented a higher density of viable cells and significant upregulation of genes associated with osteogenic lineage, which were achieved without the use of specific medium or growth factors. These results were supported by the elevated levels of calcium, osteocalcin, and mineralization (P<0.05) observed at different time points (0, 7, 14, and 21 days). Furthermore, electron microscopic observations and fibronectin localization revealed that PLLA/Col/HA scaffolds exhibited superior osteoinductivity, when compared with PLLA/Col or PLLA/HA scaffolds. These findings indicated that the fibrous structure and synergistic action of Col and nano-HA with high-molecular-weight PLLA played a vital role in inducing osteogenic differentiation of hMSCs. The data obtained in this study demonstrated that the developed fibrous PLLA/Col/HA biocomposite scaffold may be supportive for stem cell based therapies for bone repair, when compared with the other two scaffolds.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  4. Salehinejad P, Alitheen NB, Nematollahi-Mahani SN, Ali AM, Omar AR, Janzamin E, et al.
    Cytotherapy, 2012 Sep;14(8):948-53.
    PMID: 22587592 DOI: 10.3109/14653249.2012.684377
    BACKGROUND AIMS: Mesenchymal stromal cells (MSC) have been isolated from a number of different tissues, including umbilical cord. Because of the lack of a uniform approach to human umbilical cord matrix-derived mesenchymal (hUCM) cell expansion, we attempted to identify the optimum conditions for the production of a high quantity of hUCM cells by comparing two media.

    METHODS: We compared the ability of Dulbecco's Modified Eagle's Medium/F12 (DMEM/F12) and Alpha Minimum Essential Medium (α-MEM) with Glutamax (GL) (α-MEM/GL) to expand hUCM cells. For this purpose, hUCM cells were cultured in plates containing different culture media supplemented with 10% fetal bovine serum (FBS). Culture dishes were left undisturbed for 10-14 days to allow propagation of the newly formed hUCM cells. The expansion properties, CD marker expression, differentiation potential, population doubling time (PDT) and cell activity were compared between the two groups.

    RESULTS: The hUCM cells harvested from each group were positive for MSC markers, including CD44, CD90 and CD105, while they were negative for the hematopoietic cell surface marker CD34. Differentiation into adipogenic and osteogenic lineages was confirmed for both treatments. Cell activity was higher in the α-MEM/GL group than the DMEM/F12 group. PDT was calculated to be 60 h for the DMEM/F12 group, while for the α-MEM/GL group it was 47 h.

    CONCLUSIONS: Our data reveal that α-MEM/GL with 10% FBS supports hUCM cell growth more strongly than DMEM/F12 with 10% FBS.

    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  5. Choi JR, Yong KW, Wan Safwani WKZ
    Cell Mol Life Sci, 2017 07;74(14):2587-2600.
    PMID: 28224204 DOI: 10.1007/s00018-017-2484-2
    Human adipose-derived mesenchymal stem cells (hASCs) are an ideal cell source for regenerative medicine due to their capabilities of multipotency and the readily accessibility of adipose tissue. They have been found residing in a relatively low oxygen tension microenvironment in the body, but the physiological condition has been overlooked in most studies. In light of the escalating need for culturing hASCs under their physiological condition, this review summarizes the most recent advances in the hypoxia effect on hASCs. We first highlight the advantages of using hASCs in regenerative medicine and discuss the influence of hypoxia on the phenotype and functionality of hASCs in terms of viability, stemness, proliferation, differentiation, soluble factor secretion, and biosafety. We provide a glimpse of the possible cellular mechanism that involved under hypoxia and discuss the potential clinical applications. We then highlight the existing challenges and discuss the future perspective on the use of hypoxic-treated hASCs.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  6. Kardia E, Zakaria N, Sarmiza Abdul Halim NS, Widera D, Yahaya BH
    Regen Med, 2017 03;12(2):203-216.
    PMID: 28244823 DOI: 10.2217/rme-2016-0112
    The therapeutic use of mesenchymal stromal cells (MSCs) represents a promising alternative clinical strategy for treating acute and chronic lung disorders. Several preclinical reports demonstrated that MSCs can secrete multiple paracrine factors and that their immunomodulatory properties can support endothelial and epithelial regeneration, modulate the inflammatory cascade and protect lungs from damage. The effects of MSC transplantation into patients suffering from lung diseases should be fully evaluated through careful assessment of safety and associated risks, which is a prerequisite for translation of preclinical research into clinical practice. In this article, we summarize the current status of preclinical research and review initial MSC-based clinical trials for treating lung injuries and lung disorders.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  7. Salih M, Shaharuddin B, Abdelrazeg S
    Curr Stem Cell Res Ther, 2020;15(3):211-218.
    PMID: 31995019 DOI: 10.2174/1574888X15666200129145251
    Organ and tissue transplantation are limited by the scarcity of donated organs or tissue sources. The success of transplantation is limited by the risk of disease transmission and immunological- related rejection. There is a need for new strategies and innovative solutions to make transplantation readily available, safer and with less complications to increase the success rates. Accelerating progress in stem cell biology and biomaterials development have pushed tissue and organ engineering to a higher level. Among stem cells repertoire, Mesenchymal Stem Cells (MSC) are gaining interest and recognized as a cell population of choice. There is accumulating evidence that MSC growth factors, its soluble and insoluble proteins are involved in several key signaling pathways to promote tissue development, cellular differentiation and regeneration. MSC as multipotent non-hematopoietic cells with paracrine factors is advantageous for regenerative therapies. In this review, we discussed and summarized the important features of MSC including its immunomodulatory properties, mechanism of homing in the direction of tissue injury, licensing of MSC and the role of MSC soluble factors in cell-free therapy. Special consideration is highlighted on the rapidly growing research interest on the roles of MSC in ocular surface regeneration.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  8. Shamsul BS, Aminuddin BS, Ng MH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:196-7.
    PMID: 15468885
    Bone marrow harvested by aspiration contains connective tissue progenitor cells which can be selectively isolated and induced to express bone phenotype in vitro. The osteoblastic progenitor can be estimated by counting the number of cells attach using the haemacytometer. This study was undertaken to test the hypothesis that human aging is associated with a significant change on the number of osteoblastic progenitors in the bone marrow. Bone marrow aspirates were harvested from 38 patients, 14 men (age 11-70) and 24 women (age 10-70) and cultured in F12: DMEM (1:1). In total 15 bone marrow samples have been isolated from patients above 40 years old (men/women) of age. Fourteen (93.3%) of this samples failed to proliferate. Only one (6.7%) bone marrow sample from a male patient, aged 59 years old was successfully cultured. Seventy percent (16/23) of the samples from patient below than 40 years old were successfully cultured. However, our observation on the survival rate for cells of different gender from patient below 40 years old does not indicate any significant difference. From this study, we conclude that the growth of bone marrow stromal cells possibly for bone engineering is better from bone marrow aspirates of younger patient.
    Matched MeSH terms: Stromal Cells/cytology; Mesenchymal Stromal Cells/cytology*
  9. Lim J, Razi ZR, Law J, Nawi AM, Idrus RB, Ng MH
    Cytotherapy, 2016 12;18(12):1493-1502.
    PMID: 27727016 DOI: 10.1016/j.jcyt.2016.08.003
    BACKGROUND AIMS: Human Wharton's jelly-derived mesenchymal stromal cells (hWJMSCs) are possibly the most suitable allogeneic cell source for stromal cell therapy and tissue engineering applications because of their hypo-immunogenic and non-tumorigenic properties, easy availability and minimal ethical concerns. Furthermore, hWJMSCs possess unique properties of both adult mesenchymal stromal cells and embryonic stromal cells. The human umbilical cord (UC) is approximately 50-60 cm long and the existing studies in the literature have not provided information on which segment of the UC was studied. In this study, hWJMSCs derived from three anatomical segments of the UC are compared.

    METHODS: Three segments of the whole UC, each 3 cm in length, were identified anatomically as the maternal, middle and fetal segments. The hWJMSCs from the different segments were analyzed via trypan blue exclusion assay to determine the growth kinetics and cell viability, flow cytometry for immunophenotyping and immunofluorescence and reverse transcriptase polymerase chain reaction (RT-PCR) for expression of stromal cell transcriptional factors. Furthermore, the trilineage differentiation potential (osteogenic, adipogenic and chondrogenic) of these cells was also assessed.

    RESULTS: hWJMSCs isolated from the maternal and fetal segments displayed greater viability and possessed a significantly higher proliferation rate compared with cells from the middle segment. Immunophenotyping revealed that hWJMSCs derived from all three segments expressed the MSC markers CD105, CD73, CD90, CD44, CD13 and CD29, as well as HLA-ABC and HLA-DR, but were negative for hematopoietic markers CD14, CD34 and CD45. Analysis of the embryonic markers showed that all three segments expressed Nanog and Oct 3/4, but only the maternal and fetal segments expressed SSEA 4 and TRA-160. Cells from all three segments were able to differentiate into chondrogenic, osteogenic and adipogenic lineages with the middle segments showing much lower differentiation potential compared with the other two segments.

    CONCLUSIONS: hWJMSCs derived from the maternal and fetal segments of the UC are a good source of MSCs compared with cells from the middle segment because of their higher proliferation rate and viability. Fetal and maternal segments are the preferred cell source for bone regeneration.

    Matched MeSH terms: Stromal Cells/cytology; Mesenchymal Stromal Cells/cytology*
  10. Choo KB, Tai L, Hymavathee KS, Wong CY, Nguyen PN, Huang CJ, et al.
    Int J Med Sci, 2014;11(11):1201-7.
    PMID: 25249788 DOI: 10.7150/ijms.8356
    On in vitro expansion for therapeutic purposes, the regenerative potentials of mesenchymal stem cells (MSCs) decline and rapidly enter pre-mature senescence probably involving oxidative stress. To develop strategies to prevent or slow down the decline of regenerative potentials in MSC culture, it is important to first address damages caused by oxidative stress-induced premature senescence (OSIPS). However, most existing OSIPS study models involve either long-term culture to achieve growth arrest or immediate growth arrest post oxidative agent treatment and are unsuitable for post-induction studies.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  11. Gnanasegaran N, Govindasamy V, Musa S, Kasim NH
    Int J Med Sci, 2014;11(4):391-403.
    PMID: 24669199 DOI: 10.7150/ijms.7697
    Human adipose stem cells (ASCs) has been in the limelight since its discovery as a suitable source of mesenchymal stem cells (MSCs) in regenerative medicine. Currently, two major techniques are used to isolate ASCs, namely liposuction and tissue biopsy. These two methods are relatively risk-free but the question as to which method could give a more efficient output remains unclear. Thus, this study was carried out to compare and contrast the output generated in regards to growth kinetics, differentiation capabilities in vitro, and gene expression profiling. It was found that ASCs from both isolation methods were comparable in terms of growth kinetics and tri-lineage differentiation. Furthermore, ASCs from both populations were reported as CD44(+), CD73(+), CD90(+), CD166(+), CD34(-), CD45(-) and HLA-DR(-). However, in regards to gene expression, a group of overlapping genes as well as distinct genes were observed. Distinct gene expressions indicated that ASCs (liposuction) has endoderm lineage propensity whereas ASCs (biopsy) has a tendency towards mesoderm/ectoderm lineage. This information suggests involvement in different functional activity in accordance to isolation method. In conclusion, future studies to better understand these gene functions should be carried out in order to contribute in the applicability of each respective cells in regenerative therapy.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology
  12. Ab Kadir R, Zainal Ariffin SH, Megat Abdul Wahab R, Kermani S, Senafi S
    ScientificWorldJournal, 2012;2012:843843.
    PMID: 22666162 DOI: 10.1100/2012/843843
    Unspecialized cells that can renew themselves and give rise to multiple differentiated cell types are termed stem cells. The objective of this study was to characterize and investigate, through molecular and biochemical analyses, the stemness of cells derived from isolated mononucleated cells that originated from peripheral blood. The isolated mononucleated cells were separated according to their physical characteristics (adherent and suspension), after 4 to 7 days into a 14-day culturing period in complete medium. Our results revealed that adherent and suspension cells were positive for mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) markers, respectively. Differentiation of adherent cells into osteoblasts was associated with expression of the OPN gene and increasing ALP enzyme activity, while differentiation of suspension cells into osteoclasts was associated with expression of the TRAP gene and increasing TRAP enzyme activity. In conclusion, molecular and biochemical analyses showed that mononucleated cells consist of MSC (adherent) and HSC (suspension), and both cell types are able to differentiate into specialized cells from their respective lineage: osteoblast (MSC) and osteoclast (HSC).
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology
  13. Mok PL, Cheong SK, Leong CF
    Malays J Pathol, 2008 Jun;30(1):11-9.
    PMID: 19108406 MyJurnal
    Mesenchymal stem cells are pluripotent progenitors that could be found in human bone marrow. Mesenchymal stem cells are capable of renewing themselves without differentiation in long-term culture. These cells also have low immunogenicity and can suppress alloreactive T cell responses. In the current study, mesenchymal stem cells isolated and propagated previously from the bone marrow of a megaloblastic anaemia patient were tested for their capabilities to differentiate into adipocytes, chondrocytes and osteoblasts in vitro. The differentiated cells were determined by Oil Red O, Alcian Blue-PAS and Alizarin Red S staining, and reverse transcriptase-polymerase chain reaction to determine the expression of mRNA specific for adipogenesis, chondrogenesis and osteogenesis. The results showed that the fibroblast-like cells were capable of differentiating into adipocytes, chondrocytes and osteoblasts upon chemical induction. The adipocytes, chondrocytes and osteoblasts were stained positively to Oil Red O, Alcian Blue-PAS and Alizarin Red S respectively. The differentiated cells were also found to express mRNA specific for adipogenesis ('peroxisome proliferation-activated receptor gamma2' and lipoprotein lipase), chondrogenesis (collagen type II) and osteogenesis (osteocalcin, osteopontin and alkaline phosphatase). In conclusion, this research has successfully isolated fibroblast-like cells from human bone marrow and these cells demonstrated morphological, cytochemical and immunochemical characteristics similar to mesenchymal stem cells. These cells maintain their proliferative properties and could be differentiated into the mesoderm lineage. The success of this study is vital because mesenchymal stem cells can be used in cellular therapy to regenerate or replace damaged tissues, or as a vehicle for therapeutic gene delivery in the future.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  14. Yazid AG, Anuar A, Onhmar HT, Ng AM, Ruszymah BH, Amaramalar SN
    Med J Malaysia, 2008 Jul;63 Suppl A:113-4.
    PMID: 19025011
    Spinal cord, sciatic nerve, olfactory ensheathing cell and bone marrow derived mesenchymal stem cells were evaluated as an alternative source for tissue engineering of nerve conduit. All cell sources were cultured in alpha-MEM medium. Olfactory Ensheathing Cell (OEC) showed the best result with higher growth kinetic compared to the others. Spinal cord and sciatic nerve were positive for GFAP, OEC were positive for GFAP, S100b and anti-cytokeratin 18 but negative for anti-Human Fibroblast.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology
  15. Sarmadi VH, Heng FS, Ramasamy R
    Med J Malaysia, 2008 Jul;63 Suppl A:63-4.
    PMID: 19024985
    The therapeutic effect of mesenchymal stem cells (MSC) has been extensively investigated in recent decades, however this therapeutic effect has not been fully characterised. The aim of this study is to elucidate the inhibitory effect of MSC on haematopoietic tumour cells proliferation such as BV173 cell line. To this end, MSC generated from bone marrow, after immunophenotyping, they were co-cultured with tumour cell. The result shows that MSC profoundly inhibit the tumour cell proliferation via arresting the tumour cells at G0 and G1 phase of cell cycle.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  16. Al-Salihi KA
    Med J Malaysia, 2004 May;59 Suppl B:200-1.
    PMID: 15468887
    In the present study, natural coral of porites species was used as scaffold combined with in vitro expanded bone marrow stem cell derived osteoblasts (BMSC-DO), to develop a tissue-engineered bone graft in a rat model. Coral was molded into the shape of rat mandible seeded with 5x10(6) /ml BMSC-DO subsequently implanted subcutaneously in the back of 5 week Sprague dawely rats for 3 months. Coral alone was implanted as a control. The implants were harvest and processed for gross inspection and histological observations. The results showed that newly bone grafts were successfully formed coral seeded with cells group showed smooth highly vascularized like bone tissue. Histological sections revealed mature bone formation and lots of blood vessel, the bone formation occurred in the manner resemble intramembraneous bone formation. This study demonstrates that coral can be use as a suitable scaffold material for delivering bone marrow mesenchymal stem cells in tissue engineering.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  17. Karunanithi P, Murali MR, Samuel S, Raghavendran HRB, Abbas AA, Kamarul T
    Carbohydr Polym, 2016 08 20;147:294-303.
    PMID: 27178935 DOI: 10.1016/j.carbpol.2016.03.102
    Presence of sulfated polysaccharides like heparan sulphate has often been implicated in the regulation of chondrogenesis. However, recently there has been a plethora of interest in the use of non-animal extracted analogs of heparan sulphate. Here we remodeled alginate (1.5%) by incorporating fucoidan (0.5%), a natural sulphated polysaccharide extracted from seaweeds to form a composite hydrogel (Al-Fu), capable of enhancing chondrogenesis of human mesenchymal stromal cells (hMSCs). We confirmed the efficiency of fucoidan incorporation by FTIR and EDX analysis. Further, its ability to support hMSC attachment and chondrogenic differentiation was confirmed by SEM, biochemical glycosaminoglycan quantification, real-time quantitative PCR and immunocytochemical analyses of chondrogenic markers Sox-9, Collagen II, Aggrecan and COMP. Effect of Al-Fu hydrogel on hMSC hypertrophy was also confirmed by the downregulation of hypertrophic genes Collagen X and Runx2. This composite scaffold can hence be used as a cartilage biomimetic biomaterial to drive hMSC chondrogenesis and for other cartilage repair based therapies.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  18. Yong KW, Wan Safwani WK, Xu F, Wan Abas WA, Choi JR, Pingguan-Murphy B
    Biopreserv Biobank, 2015 Aug;13(4):231-9.
    PMID: 26280501 DOI: 10.1089/bio.2014.0104
    Mesenchymal stem cells (MSCs) hold many advantages over embryonic stem cells (ESCs) and other somatic cells in clinical applications. MSCs are multipotent cells with strong immunosuppressive properties. They can be harvested from various locations in the human body (e.g., bone marrow and adipose tissues). Cryopreservation represents an efficient method for the preservation and pooling of MSCs, to obtain the cell counts required for clinical applications, such as cell-based therapies and regenerative medicine. Upon cryopreservation, it is important to preserve MSCs functional properties including immunomodulatory properties and multilineage differentiation ability. Further, a biosafety evaluation of cryopreserved MSCs is essential prior to their clinical applications. However, the existing cryopreservation methods for MSCs are associated with notable limitations, leading to a need for new or improved methods to be established for a more efficient application of cryopreserved MSCs in stem cell-based therapies. We review the important parameters for cryopreservation of MSCs and the existing cryopreservation methods for MSCs. Further, we also discuss the challenges to be addressed in order to preserve MSCs effectively for clinical applications.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  19. Halim NS, Aizat WM, Yahaya BH
    Regen Med, 2019 01;14(1):15-31.
    PMID: 30566028 DOI: 10.2217/rme-2018-0020
    AIM: This study was aimed to investigate the effect of mesenchymal stem cell (MSC)-secreted factors on airway repair.

    MATERIALS & METHODS: An indirect in vitro coculture model of injured airway epithelium explant with MSCs was developed. LC-MS/MS analysis was performed to determine factors secreted by MSCs and their involvement in epithelium repair was evaluated by histopathological assessment.

    RESULTS: The identification of 54 of MSC proteins of which 44 of them were secretory/extracellular proteins. 43 of the secreted proteins were found to be involved in accelerating airway epithelium repair by stimulating the migratory, proliferative and differentiation abilities of the endogenous repair mechanisms. MSC-secreted proteins also initiated epithelial-mesenchymal transition process during early repair.

    CONCLUSION: MSC-secreted factors accelerated airway epithelial repair by stimulating the endogenous reparative and regenerative ability of lung cells.

    Matched MeSH terms: Mesenchymal Stromal Cells/cytology
  20. Gunawardena TNA, Rahman MT, Abdullah BJJ, Abu Kasim NH
    J Tissue Eng Regen Med, 2019 04;13(4):569-586.
    PMID: 30644175 DOI: 10.1002/term.2806
    Recent studies suggest that the main driving force behind the therapeutic activity observed in mesenchymal stem cells (MSCs) are the paracrine factors secreted by these cells. These biomolecules also trigger antiapoptotic events to prevent further degeneration of the diseased organ through paracrine signalling mechanisms. In comparison with the normal physiological conditions, an increased paracrine gradient is observed within the peripheral system of diseased organs that enhances the migration of tissue-specific MSCs towards the site of infection or injury to promote healing. Thus, upon administration of conditioned media derived from mesenchymal stem cell cultures (MSC-CM) could contribute in maintaining the increased paracrine factor gradient between the diseased organ and the stem cell niche in order to speed up the process of recovery. Based on the principle of the paracrine signalling mechanism, MSC-CM, also referred as the secretome of the MSCs, is a rich source of the paracrine factors and are being studied extensively for a wide range of regenerative therapies such as myocardial infarction, stroke, bone regeneration, hair growth, and wound healing. This article highlights the current technological applications and advances of MSC-CM with the aim to appraise its future potential as a regenerative therapeutic agent.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links