Displaying all 5 publications

Abstract:
Sort:
  1. Razak FA, Rahim ZH
    J Oral Sci, 2003 Dec;45(4):201-6.
    PMID: 14763515
    The aqueous extracts of Piper betle and Psidium guajava were prepared and tested for their anti-adherence effect on the adhesion of early plaque settlers (Strep. mitis, Strep. sanguinis and Actinomyces sp.). The saliva-coated glass surfaces were used to simulate the pellicle-coated enamel surface in the oral cavity. Our results showed that the anti-adherence activities of Piper betle and Psidium guajava extracts towards the bacteria were different between the bacterial species. Psidium guajava was shown to have a slightly greater anti-adherence effect on Strep. sanguinis by 5.5% and Actinomyces sp. by 10% and a significantly higher effect on Strep. mitis (70%) compared to Piper betle. The three bacterial species are known to be highly hydrophobic, and that hydrophobic bonding seemed to be an important factor in their adherence activities. It is therefore suggested that the plant extracts, in expressing their anti-adherence activities, could have altered the hydrophobic nature of the bonding between the bacteria and the saliva-coated glass surfaces.
    Matched MeSH terms: Streptococcus mitis/drug effects
  2. Wang Y, Chung FF, Lee SM, Dykes GA
    BMC Res Notes, 2013;6:143.
    PMID: 23578062 DOI: 10.1186/1756-0500-6-143
    Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel.
    Matched MeSH terms: Streptococcus mitis/drug effects
  3. Razak FA, Othman RY, Rahim ZH
    J Oral Sci, 2006 Jun;48(2):71-5.
    PMID: 16858135
    The adhesion of early settlers of dental plaque to the tooth surface has a role in the initiation of the development of dental plaque. The hydrophobic surface properties of the bacteria cell wall are indirectly responsible for the adhesion of the bacteria cell to the acquired pellicle on the tooth surfaces. In this study, the effect of aqueous extract of two plants (Psidium guajava and Piper betle) on the cell-surface hydro-phobicity of early settlers of dental plaque was determined in vitro. Hexadecane, a hydrocarbon was used to represent the hydrophobic surface of the teeth in the oral cavity. It was found that treatment of the early plaque settlers with 1 mg/ml extract of Psidium guajava reduced the cell-surface hydrophobicity of Strep. sanguinis, Strep. mitis and Actinomyces sp. by 54.1%, 49.9% and 40.6%, respectively. Treatment of these bacteria with the same concentration of Piper betle however, showed a comparatively lesser effect (< 10%). It was also observed that the anti-adhesive effect of the two extracts on the binding of the early plaque settlers to hexadecane is concentration dependent.
    Matched MeSH terms: Streptococcus mitis/drug effects
  4. Abdulbaqi HR, Himratul-Aznita WH, Baharuddin NA
    Arch Oral Biol, 2016 Oct;70:117-124.
    PMID: 27343694 DOI: 10.1016/j.archoralbio.2016.06.011
    OBJECTIVE: Green tea (Gt), leafs of Camellia sinensis var. assamica, is widely consumed as healthy beverage since thousands of years in Asian countries. Chewing sticks (miswak) of Salvadora persica L. (Sp) are traditionally used as natural brush to ensure oral health in developing countries. Both Gt and Sp extracts were reported to have anti-bacterial activity against many dental plaque bacteria. However, their combination has never been tested to have anti-bacterial and anti-adherence effect against primary dental plaque colonizers, playing an initial role in the dental plaque development, which was investigated in this study.

    METHODS: Two-fold serial micro-dilution method was used to measure minimal inhibitory concentration (MIC) of aqueous extracts of Gt, Sp and their combinations. Adsorption to hexadecane was used to determine the cell surface hydrophobicity (CSH) of bacterial cells. Glass beads were used to mimic the hard tissue surfaces, and were coated with saliva to develop experimental pellicles for the adhesion of the primary colonizing bacteria.

    RESULTS: Gt aqueous extracts exhibited better anti-plaque effect than Sp aqueous extracts. Their combination, equivalent to 1/4 and 1/2 of MIC values of Gt and Sp extracts respectively, showed synergistic anti-plaque properties with fractional inhibitory concentration (FIC) equal to 0.75. This combination was found to significantly reduce CSH (p<0.05) and lower the adherence ability (p<0.003) towards experimental pellicles.

    CONCLUSION: Combination between Gt and Sp aqueous extracts exhibited synergistic anti-plaque activity, and could be used as a useful active agent to produce oral health care products.

    Matched MeSH terms: Streptococcus mitis/drug effects*
  5. Azizan N, Mohd Said S, Zainal Abidin Z, Jantan I
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206142 DOI: 10.3390/molecules22122135
    In this study, the essential oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack were evaluated for their antibacterial activity against invasive oral pathogens, namely Enterococcus faecalis, Streptococcus mutans, Streptococcus mitis, Streptococcus salivarius, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. Chemical composition of the oils was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the oils and their major constituents were investigated using the broth microdilution method (minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)). Susceptibility test, anti-adhesion, anti-biofilm, checkerboard and time-kill assays were also carried out. Physiological changes of the bacterial cells after exposure to the oils were observed under the field emission scanning electron microscope (FESEM). O. stamineus and F. deltoidea oils mainly consisted of sesquiterpenoids (44.6% and 60.9%, respectively), and β-caryophyllene was the most abundant compound in both oils (26.3% and 36.3%, respectively). Other compounds present in O. stamineus were α-humulene (5.1%) and eugenol (8.1%), while α-humulene (5.5%) and germacrene D (7.7%) were dominant in F. deltoidea. The oils of both plants showed moderate to strong inhibition against all tested bacteria with MIC and MBC values ranging 0.63-2.5 mg/mL. However, none showed any inhibition on monospecies biofilms. The time-kill assay showed that combination of both oils with amoxicillin at concentrations of 1× and 2× MIC values demonstrated additive antibacterial effect. The FESEM study showed that both oils produced significant alterations on the cells of Gram-negative bacteria as they became pleomorphic and lysed. In conclusion, the study indicated that the oils of O. stamineus and F. deltoidea possessed moderate to strong antibacterial properties against the seven strains pathogenic oral bacteria and may have caused disturbances of membrane structure or cell wall of the bacteria.
    Matched MeSH terms: Streptococcus mitis/drug effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links