Displaying all 6 publications

Abstract:
Sort:
  1. Yap KL, Ooi YE, Khor CM, Wong SH
    Malays J Pathol, 1992 Dec;14(2):105-10.
    PMID: 1338997
    The group A rotavirus staphylococcal co-agglutination test was evaluated and its sensitivity and specificity compared with an in-house enzyme-linked immunosorbent assay (ELISA) and a commercial latex agglutination test (Rotalex). In addition, the storage stability of the staphylococcal reagents was ascertained. Examination of 136 clarified suspensions of diarrhoeal faeces by the staphylococcal co-agglutination test revealed a high proportion of false positives (26%) and uninterpretable results (34%) due to non-specific agglutination. Non-specific agglutination could be removed effectively by prior absorption of the clarified faecal specimens with unsensitized staphylococci. The staphylococcal co-agglutination test was less sensitive and specific than the in-house enzyme-linked immunosorbent assay but was comparable to the Rotalex slide latex agglutination test. The staphylococcal reagents have a shelf life of at least 29 weeks.
    Matched MeSH terms: Staphylococcal Protein A*
  2. Dakheel KH, Abdul Rahim R, Neela VK, Al-Obaidi JR, Hun TG, Yusoff K
    Biomed Res Int, 2016;2016:4708425.
    PMID: 28078291 DOI: 10.1155/2016/4708425
    Twenty-five methicillin-resistant Staphylococcus aureus (MRSA) isolates were characterized by staphylococcal protein A gene typing and the ability to form biofilms. The presence of exopolysaccharides, proteins, and extracellular DNA and RNA in biofilms was assessed by a dispersal assay. In addition, cell adhesion to surfaces and cell cohesion were evaluated using the packed-bead method and mechanical disruption, respectively. The predominant genotype was spa type t127 (22 out of 25 isolates); the majority of isolates were categorized as moderate biofilm producers. Twelve isolates displayed PIA-independent biofilm formation, while the remaining 13 isolates were PIA-dependent. Both groups showed strong dispersal in response to RNase and DNase digestion followed by proteinase K treatment. PIA-dependent biofilms showed variable dispersal after sodium metaperiodate treatment, whereas PIA-independent biofilms showed enhanced biofilm formation. There was no correlation between the extent of biofilm formation or biofilm components and the adhesion or cohesion abilities of the bacteria, but the efficiency of adherence to glass beads increased after biofilm depletion. In conclusion, nucleic acids and proteins formed the main components of the MRSA clone t127 biofilm matrix, and there seems to be an association between adhesion and cohesion in the biofilms tested.
    Matched MeSH terms: Staphylococcal Protein A/genetics; Staphylococcal Protein A/metabolism
  3. Ho WY, Choo QC, Chew CH
    Microb Drug Resist, 2017 Mar;23(2):215-223.
    PMID: 27203527 DOI: 10.1089/mdr.2015.0250
    We investigated the epidemiology and clonality of 175 nonrepetitive methicillin-resistant Staphylococcus aureus (MRSA) isolates from clinical specimens collected between 2011 and 2012 in Kinta Valley in Malaysia. Molecular tools such as polymerase chain reaction, pulsed-field gel electrophoresis, and staphylococcal protein A (spa) typing were used. Our study revealed the predominance of three closely related ermA(+) SCCmec type III pulsotypes belonging to spa type t037 (Brazilian-Hungarian clone), which were deficient in the locus F, but positive for the ccrC gene in majority (65.7%) of the MRSA infections in this region. The first evidence of SCCmec type II MRSA in the country, belonging to spa type t2460, was also noted. Although the carriage of pvl gene was uncommon (8.6%) and mostly confined to either SCCmec type IV or SCCmec type V isolates, most of these isolates belonged to spa types t345 or t657, which are associated with the Bengal-Bay CA-MRSA clone. Interestingly, spa t304 and t690 SCCmec type IV pvl(+) were also detected among the MRSA isolates. Data from this study show the rise of uncommon clones among MRSA isolates in Malaysia.
    Matched MeSH terms: Staphylococcal Protein A/genetics*
  4. Al-Sharqi A, Apun K, Vincent M, Kanakaraju D, Bilung LM, Sum MSH
    J Appl Microbiol, 2020 Jan;128(1):102-115.
    PMID: 31596989 DOI: 10.1111/jam.14471
    AIM: This work reports a new method for the use of lasers for the selective killing of bacteria targeted using light-absorbing Silver nanoparticles (Ag-NPs) conjugated with a specific antibody against the Gram-positive bacterium Staphylococcus aureus (S. aureus).

    METHODS AND RESULTS: Ag-NPs were synthesized using a chemical reduction method and characterized with respect to their surface plasmon resonance, surface morphology via transmission electron microscopy (TEM) and dynamic light scattering (DLS). The bacterial surface was targeted using 20 nm Ag-NPs conjugated with an anti-protein A antibody. Labelled bacteria were irradiated with blue visible laser at 2·04 W/cm2 . The antibacterial activity of functionalized Ag-NPs was investigated by fluorescence microscopy after irradiation, and morphological changes in S. aureus after laser treatment were assessed using scanning electron microscopy (SEM). The laser-irradiated, functionalized Ag-NPs exhibited significant bactericidal activity, and laser-induced bacterial damage was observed after 10 min of laser irradiation against S. aureus. The fluorescence microscopic analysis results supported that bacterial cell death occurred in the presence of the functionalized Ag-NPs.

    CONCLUSIONS: The results of this study suggest that a novel method for the preparation of functionalized nanoparticles has potential as a potent antibacterial agent for the selective killing of resistant disease-causing bacteria.

    SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that Ag-NPs functionalized with a specific antibody, could be used in combination with laser radiation as a novel treatment to target resistant bacterial and fungal pathogens with minimal impact on normal microflora.

    Matched MeSH terms: Staphylococcal Protein A/immunology
  5. Atshan SS, Shamsudin MN, Lung LT, Sekawi Z, Ghaznavi-Rad E, Pei CP
    J Biomed Biotechnol, 2012;2012:417247.
    PMID: 22529705 DOI: 10.1155/2012/417247
    The ability to adhere and produce biofilms is characteristic of enhanced virulence among isolates of methicillin-resistant Staphylococcus aureus (MRSA). The aim of the study is to find out whether these characteristics are consistently similar among isolates variations of MRSA. The study used 30 various isolates of MRSA belong to 13 spa types and 5 MLST types and determined the aggregation, the adherence, and the production of biofilms and slime for each isolate. The methods used to evaluate these characteristics were a modified Congo red agar assay (MCRA), a microtiter plate assay (MPA), high-magnification light microscopy, scanning electron microscopy (SEM), and PCR. The study found that isolates belonging to similar Spa, SCCmec, and ST types have similar abilities to produce biofilms; however, their ability to produce slime on CRA was found to be different. Moreover, isolates that have different Spa types showed high variation in their ability to produce biofilms. The results of light microscope revealed the isolates that produced strong and weak biofilms and formed similar aggregation on the glass surfaces. SEM results showed that all 30 MRSA isolates that were tested were 100% positive for biofilm formation, although to varying degrees. Further testing using PCR confirmed that 100% of the 30 isolates tested were positive for the presence of the icaADBC, fnbA, eno, ebps, clfA, and clfB genes. The prevalence of fib, cna, fnbB, and bbp in MRSA clones was 90, 93.33, 53.33, and 10%, respectively. This study indicate that differences in biofilm production capacities are caused by the differences in surface protein A (Spa) type and are not due to differences in MLST and SCCmec types.
    Matched MeSH terms: Staphylococcal Protein A/genetics
  6. Ling HL, Rahmat Z, Bakar FDA, Murad AMA, Illias RM
    Microbiol Res, 2018 Oct;215:46-54.
    PMID: 30172308 DOI: 10.1016/j.micres.2018.06.006
    Bacillus lehensis G1 is an alkaliphilic bacterium that is capable of surviving in environments up to pH 11. Secretome related to bacterial acclimation in alkaline environment has been less studied compared to cytoplasmic and membrane proteome. The aim of this study was to gain better understanding of bacterial acclimation to alkaline media through analyzing extracellular proteins of B. lehensis. The pH range for B. lehensis growth was conducted, and two-dimensional electrophoresis and MALDI-TOF/TOF MS analysis were conducted to characterize changes in protein profiling in B. lehensis cultured at pH 8 and pH 11 when compared with those cultured at pH 10 (optimal growth pH). B. lehensis could grow well at pH ranging from 8 to 11 in which the bacteria showed to posses thinner flagella at pH 11. Proteomic analyses demonstrated that five proteins were up-regulated and 13 proteins were down-regulated at pH 8, whereas at pH 11, 14 proteins were up-regulated and 8 were down-regulated. Majority of the differentially expressed proteins were involved in the cell wall, main glycolytic pathways, the metabolism of amino acids and related molecules and some proteins of unknown function. A total of 40 differentially expressed protein spots corresponding to 33 proteins were identified; including GlcNAc-binding protein A, chitinase, endopeptidase lytE, flagellar hook-associated proteins and enolase. These proteins may play important roles in acclimation to alkaline media via reallocation of cell wall structure and changes to cell surface glycolytic enzymes, amino acid metabolism, flagellar hook-associated proteins and chaperones to sustain life under pH-stressed conditions.
    Matched MeSH terms: Staphylococcal Protein A
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links