Displaying all 11 publications

Abstract:
Sort:
  1. Tan CE, Fok MW, Luk KD, Cheung KM
    J Orthop Surg (Hong Kong), 2014 Aug;22(2):224-7.
    PMID: 25163961
    PURPOSE. To evaluate the insertion torque and pullout strength of pedicle screws with or without repositioning. METHODS. 20 fresh porcine lumbar vertebrae of similar size were used. The entry point was at the site just lateral and distal to the superior facet joint of the vertebra, and to a depth of 35 mm. A 6.2-mm-diameter, 35-mm-long pedicle screw was inserted parallel to the superior end plate on one side as control. On the other side, an identical screw was first inserted 10º caudal to the superior end plate, and then repositioned parallel to the superior end plate. The insertional torque and pullout strength were measured. RESULTS. Three of the specimens were excluded owing to pedicle fractures during the pullout test. Repositioned pedicle screws were significantly weaker than controls in terms of the maximum insertional torque (3.20 ± 0.28 vs. 2.04 ± 0.28 Nm, 36% difference, p<0.01) and pullout strength (1664 ± 378 vs.1391 ± 295 N, p<0.01). CONCLUSION. Repositioning pedicle screws should be avoided, especially when the pedicle wall is breached. If repositioning is deemed necessary, augmentation with polymethyl methacrylate or a screw with a larger diameter should be considered.
    Matched MeSH terms: Spinal Fusion/instrumentation*
  2. Kwan MK, Chooi WK, Lim HH
    Med J Malaysia, 2004 Dec;59 Suppl F:14-8.
    PMID: 15941155
    Between April 1998 and December 1999, thirty patients with Idiopathic Scoliosis were operated with Multisegmented Hook-Rod System. These patients were operated at the mean age of 16 years and were followed up for a mean of 22.3 months (range 13-34 months). Seven patients had anterior release to increase the curve flexibility followed by second stage posterior instrumentation on the same day. The average operating time for a posterior instrumentation alone and anterior release combined with posterior instrumentation were 270 minutes and 522 minutes respectively. The average blood loss was 2.2 litres for posterior instrumentation alone and 3.3 litres for single day anterior release and posterior surgery. The mean preoperative Cobb's angle was 70 degrees. The mean immediate postoperative and final follow up Cobb's angles were 38 and 42 degrees, which represented an average coronal plane correction of 46.7% and 40.0% respectively. The mean preoperative apical vertebral rotation was 25 degrees, which improved to 15 degrees after the operation. At final follow up, the mean apical vertebra rotation was 20 degrees, which represented a mean apical vertebral rotation correction of 20%. Complications of the procedure included one transient neurological deficit, one infection, one graft site infection and one case of screw cut out. We were able to obtain satisfactory correction of idiopathic scoliosis with the Multisegmented Hook-Rod System.
    Matched MeSH terms: Spinal Fusion/instrumentation*
  3. Wong TS, Abu Bakar J, Chee KH, Hasan MS, Chung WH, Chiu CK, et al.
    Spine (Phila Pa 1976), 2019 02 15;44(4):E252-E257.
    PMID: 30086081 DOI: 10.1097/BRS.0000000000002828
    STUDY DESIGN: Case report.

    OBJECTIVE: To describe the technical difficulties on performing posterior spinal fusion (PSF) on a pacemaker-dependent patient with complete congenital heart block and right thoracic scoliosis.

    SUMMARY OF BACKGROUND DATA: Congenital complete heart block requires pacemaker implantation at birth through thoracotomy, which can result in scoliosis. Corrective surgery in this patient was challenging. Height gain after corrective surgery may potentially cause lead dislodgement. The usage of monopolar electrocautery may interfere with the function of the implanted cardiac device.

    METHODS: A 17-year-old boy was referred to our institution for the treatment of right thoracic scoliosis of 70°. He had underlying complete congenital heart block secondary to maternal systemic lupus erythematosus. Pacemaker was implanted through thoracotomy since birth and later changed for four times. PSF was performed by two attending surgeons with a temporary pacing inserted before the surgery. The monopolar electrocautery device was used throughout the surgery.

    RESULTS: The PSF was successfully performed without any technical issues and complications. Postoperatively, his permanent pacemaker was functioning normally. Three days later, he was recovering well and was discharged home from hospital.

    CONCLUSION: This case indicates that PSF can be performed successfully with thoughtful anticipation of technical difficulties on a pacemaker-dependent patient with underlying congenital heart block.

    LEVEL OF EVIDENCE: 5.

    Matched MeSH terms: Spinal Fusion/instrumentation
  4. Loh KW, Chan CY, Chiu CK, Bin Hasan MS, Kwan MK
    J Orthop Surg (Hong Kong), 2016 08;24(2):273-7.
    PMID: 27574278
    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke (MELAS) syndrome is a progressive multisystemic neurodegenerative disorder. MELAS syndrome impairs oxidative phosphorylation and predisposes patients to lactic acidosis, particularly under metabolic stress. We report 2 siblings with MELAS-associated idiopathic scoliosis who underwent posterior spinal instrumented fusion with measures taken to minimise anaesthetic and surgical stress, blood loss, and operating time.
    Matched MeSH terms: Spinal Fusion/instrumentation
  5. Yin Wei CC, Haw SS, Bashir ES, Beng SL, Shanmugam R, Keong KM
    J Orthop Surg (Hong Kong), 2017 01;25(1):2309499017690656.
    PMID: 28219305 DOI: 10.1177/2309499017690656
    OBJECTIVE: To compare construct stiffness of cortical screw (CS)-rod transforaminal lumbar interbody fusion (TLIF) construct (G2) versus pedicle screw (PS)-rod TLIF construct (G1) in the standardized porcine lumbar spine.

    METHODS: Six porcine lumbar spines (L2-L5) were separated into 12 functional spine units. Bilateral total facetectomies and interlaminar decompression were performed for all specimens. Non-destructive loading to assess stiffness in lateral bending, flexion and extension as well as axial rotation was performed using a universal material testing machine.

    RESULTS: PS and CS constructs were significantly stiffer than the intact spine except in axial rotation. Using the normalized ratio to the intact spine, there is no significant difference between the stiffness of PS and CS: flexion (1.41 ± 0.27, 1.55 ± 0.32), extension (1.98 ± 0.49, 2.25 ± 0.44), right lateral flexion (1.93 ± 0.57, 1.55 ± 0.30), left lateral flexion (2.00 ± 0.73, 2.16 ± 0.20), right axial rotation (0.99 ± 0.21, 0.83 ± 0.26) and left axial rotation (0.96 ± 0.22, 0.92 ± 0.25).

    CONCLUSION: The CS-rod TLIF construct provided comparable construct stiffness to a traditional PS-rod TLIF construct in a 'standardized' porcine lumbar spine model.

    Matched MeSH terms: Spinal Fusion/instrumentation*
  6. Kim HJ, Lee SH, Chang BS, Lee CK, Lim TO, Hoo LP, et al.
    Spine (Phila Pa 1976), 2015 Jan 15;40(2):87-94.
    PMID: 25575085 DOI: 10.1097/BRS.0000000000000680
    Prospective randomized controlled trial.
    Matched MeSH terms: Spinal Fusion/instrumentation*
  7. Chan CYW, Kwan MK
    Eur Spine J, 2018 02;27(2):340-349.
    PMID: 29058137 DOI: 10.1007/s00586-017-5350-x
    PURPOSE: To evaluate the zonal differences in risk and pattern of pedicle screw perforations in adolescent idiopathic scoliosis (AIS) patients.

    METHODS: The scoliosis curves were divided into eight zones. CT scans were used to assess perforations: Grade 0, Grade 1( 4 mm). Anterior perforations were classified into Grade 0, Grade 1( 6 mm). Grade 2 and 3 (except lateral grade 2 and 3 perforation over thoracic vertebrae) were considered as 'critical perforations'.

    RESULTS: 1986 screws in 137 patients were analyzed. The overall perforation rate was 8.4% after exclusion of the lateral perforation. The highest medial perforation rate was at the transitional proximal thoracic (PT)/main thoracic (MT) zone (6.9%), followed by concave lumbar (6.7%) and convex main thoracic (MT) zone (6.1%). The overall critical medial perforation rate was 0.9%. 33.3% occurred at convex MT and 22.2% occurred at transitional PT/MT zone. There were 39 anterior perforations (overall perforation rate of 2.0%). 43.6% occurred at transitional PT/MT zone, whereas 23.1% occurred at concave PT zone. The overall critical anterior perforation rate was 0.6%. 5/12 (41.7%) critical perforations occurred at concave PT zone, whereas four perforations occurred at the transitional PT/MT zone. There were only two symptomatic left medial grade 2 perforations (0.1%) resulting radiculopathy, occurring at the transitional main thoracic (MT)/Lumbar (L) zone.

    CONCLUSION: Overall pedicle perforation rate was 8.4%. Highest rate of critical medial perforation was at the convex MT zone and the transitional PT/MT zone, whereas highest rate of critical anterior perforation was at the concave PT zone and the transitional PT/MT zone. The rate of symptomatic perforations was 0.1%.

    Matched MeSH terms: Spinal Fusion/instrumentation
  8. Wazir NN, Moorthy V, Amalourde A, Lim HH
    J Orthop Surg (Hong Kong), 2005 Aug;13(2):203-6.
    PMID: 16131689 DOI: 10.1177/230949900501300220
    This is a case report of an extremely rare condition of atlanto-axial subluxation secondary to gouty arthritis, which mimicked rheumatoid arthritis at presentation. Gouty arthritis involving the spine is a rare condition. We highlight a case of gouty arthritis involving the atlanto-axial joint resulting in joint instability, subluxation, and neurological deficit. A 66-year-old obese woman who had a polyarticular disease for the previous 3 years presented with neck pain and progressive neurology. A 2-stage procedure was performed: posterior decompression and occipitocervical fusion followed by further anterior trans-oral decompression. However, after an initial neurological improvement, she succumbed to aspirational pneumonia and septicaemia. Atlanto-axial subluxation caused by gouty arthritis can present in the same way as rheumatoid arthritis. Therefore, the possibility of this as a differential diagnosis should be kept in mind.
    Matched MeSH terms: Spinal Fusion/instrumentation
  9. Kwan MK, Chiu CK, Lee CK, Chan CY
    Bone Joint J, 2015 Nov;97-B(11):1555-61.
    PMID: 26530660 DOI: 10.1302/0301-620X.97B11.35789
    Percutaneous placement of pedicle screws is a well-established technique, however, no studies have compared percutaneous and open placement of screws in the thoracic spine. The aim of this cadaveric study was to compare the accuracy and safety of these techniques at the thoracic spinal level. A total of 288 screws were inserted in 16 (eight cadavers, 144 screws in percutaneous and eight cadavers, 144 screws in open). Pedicle perforations and fractures were documented subsequent to wide laminectomy followed by skeletalisation of the vertebrae. The perforations were classified as grade 0: no perforation, grade 1: < 2 mm perforation, grade 2: 2 mm to 4 mm perforation and grade 3: > 4 mm perforation. In the percutaneous group, the perforation rate was 11.1% with 15 (10.4%) grade 1 and one (0.7%) grade 2 perforations. In the open group, the perforation rate was 8.3% (12 screws) and all were grade 1. This difference was not significant (p = 0.45). There were 19 (13.2%) pedicle fractures in the percutaneous group and 21 (14.6%) in the open group (p = 0.73). In summary, the safety of percutaneous fluoroscopy-guided pedicle screw placement in the thoracic spine between T4 and T12 is similar to that of the conventional open technique.
    Matched MeSH terms: Spinal Fusion/instrumentation
  10. Chan CY, Kwan MK, Saw LB
    Eur Spine J, 2010 Jan;19(1):78-84.
    PMID: 19763636 DOI: 10.1007/s00586-009-1157-8
    The objective of this cadaveric study is to determine the safety and outcome of thoracic pedicle screw placement in Asians using the funnel technique. Pedicle screws have superior biomechanical as well as clinical data when compared to other methods of instrumentation. However, misplacement in the thoracic spine can result in major neurological implications. There is great variability of the thoracic pedicle morphometry between the Western and the Asian population. The feasibility of thoracic pedicle screw insertion in Asians has not been fully elucidated yet. A pre-insertion radiograph was performed and surgeons were blinded to the morphometry of the thoracic pedicles. 240 pedicle screws were inserted in ten Asian cadavers from T1 to T12 using the funnel technique. 5.0 mm screws were used from T1 to T6 while 6.0 mm screws were used from T7 to T12. Perforations were detected by direct visualization via a wide laminectomy. The narrowest pedicles are found between T3 and T6. T5 pedicle width is smallest measuring 4.1 +/- 1.3 mm. There were 24 (10.0%) Grade 1 perforations and only 1 (0.4%) Grade 2 perforation. Grade 2 or worse perforation is considered significant perforation which would threaten the neural structures. There were twice as many lateral and inferior perforations compared to medial perforations. 48.0% of the perforations occurred at T1, T2 and T3 pedicles. Pedicle fracture occurred in 10.4% of pedicles. Intra-operatively, the absence of funnel was found in 24.5% of pedicles. In conclusion, thoracic pedicle screws using 5.0 mm at T1-T6 and 6.0 mm at T7-T12 can be inserted safely in Asian cadavers using the funnel technique despite having smaller thoracic pedicle morphometry.
    Matched MeSH terms: Spinal Fusion/instrumentation*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links