Displaying all 4 publications

Abstract:
Sort:
  1. Izma MKO, Zulkharnain I, Ramli B, Muhamad AR, Harwant S
    Med J Malaysia, 2003 Mar;58(1):105-10.
    PMID: 14556334
    SCIWORA or Spinal Cord Injury Without Radiological Abnormality; is a pre-MRI term that includes injuries to the spinal cord in the absence of radiological (plain radiographs, tomographs and CT scans) evidence of injury to the spinal column or cord. It occurs in skeletally immature spines because of the inherent plasticity of the bony structures in this age group. The prognosis is dependent on the extent of cord damage, and the role of active management is limited. A high index of suspicion is needed to establish a diagnosis. This diagnostic accuracy can be improved with the free availability of MRI scanning for the spines. We describe three cases of SCIWORA with a minimum follow-up of three years and a review of current literature.
    Matched MeSH terms: Spinal Cord Injuries/pathology*
  2. Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, et al.
    Int J Mol Sci, 2020 Oct 13;21(20).
    PMID: 33066029 DOI: 10.3390/ijms21207533
    Spinal cord injury (SCI) is a destructive neurological and pathological state that causes major motor, sensory and autonomic dysfunctions. Its pathophysiology comprises acute and chronic phases and incorporates a cascade of destructive events such as ischemia, oxidative stress, inflammatory events, apoptotic pathways and locomotor dysfunctions. Many therapeutic strategies have been proposed to overcome neurodegenerative events and reduce secondary neuronal damage. Efforts have also been devoted in developing neuroprotective and neuro-regenerative therapies that promote neuronal recovery and outcome. Although varying degrees of success have been achieved, curative accomplishment is still elusive probably due to the complex healing and protective mechanisms involved. Thus, current understanding in this area must be assessed to formulate appropriate treatment modalities to improve SCI recovery. This review aims to promote the understanding of SCI pathophysiology, interrelated or interlinked multimolecular interactions and various methods of neuronal recovery i.e., neuroprotective, immunomodulatory and neuro-regenerative pathways and relevant approaches.
    Matched MeSH terms: Spinal Cord Injuries/pathology
  3. Abdullahi D, Ahmad Annuar A, Sanusi J
    Ultrastruct Pathol, 2019;43(6):273-289.
    PMID: 31779507 DOI: 10.1080/01913123.2019.1695693
    Spinal cord injury (SCI) results from penetrating or compressive traumatic injury to the spine in humans or by the surgical compression of the spinal cord in experimental animals. In this study, the neuroprotective potential of Spirulina platensis was investigated on ultrastructural and functional recovery of the spinal cord following surgical-induced injury. Twenty-four Sprague-Dawley rats were divided into three groups; sham group, control (trauma) group, and experimental (S. platensis) group (180 mg/kg) of eight rats each. For each group, the rats were then subdivided into two groups to allow measurement at two different timepoints (day 14 and 28) for the microscopic analysis. Rats in the control and experimental S. platensis groups were subjected to partial crush injury at the level of T12 with Inox number 2 modified forceps by compressing on the spinal cord for 30 s. Pairwise comparisons of ultrastructural grading mean scores difference between the control and experimental S. platensis groups reveals that there were significant differences on the axonal ultrastructure, myelin sheath and BBB Score on Day 28; these correlate with the functional locomotor recovery at this timepoint. The results suggest that supplementation with S. platensis induces functional recovery and effective preservation of the spinal cord ultrastructure after SCI. These findings will open new potential avenue for further research into the mechanism of S. platensis-mediated spinal cord repair.
    Matched MeSH terms: Spinal Cord Injuries/pathology*
  4. Julia PE, Nazirah H
    Spinal Cord, 2007 Dec;45(12):804-5.
    PMID: 17710102
    Case report.
    Matched MeSH terms: Spinal Cord Injuries/pathology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links