Displaying publications 1 - 20 of 182 in total

Abstract:
Sort:
  1. Kurniawan TA, Othman MHD, Liang X, Goh HH, Gikas P, Chong KK, et al.
    J Environ Manage, 2023 Apr 15;332:117429.
    PMID: 36773474 DOI: 10.1016/j.jenvman.2023.117429
    Biochar, derived from unused biomass, is widely considered for its potential to deal with climate change problems. Global interest in biochar is attributed to its ability to sequester carbon in soil and to remediate aquatic environment from water pollution. As soil conditioner and/or adsorbent, biochar offers opportunity through a circular economy (CE) paradigm. While energy transition continues, progress toward low-emissions materials accelerates their advance towards net-zero emissions. However, none of existing works addresses CE-based biochar management to achieve carbon neutrality. To reflect its novelty, this work provides a critical overview of challenges and opportunities for biochar to promote CE and carbon neutrality. This article also offers seminal perspectives about strengthening biomass management through CE and resource recovery paradigms, while exploring how the unused biomass can promote net zero emissions in its applications. By consolidating scattered knowledge in the body of literature into one place, this work uncovers new research directions to close the loops by implementing the circularity of biomass resources in various fields. It is conclusive from a literature survey of 113 articles (2003-2023) that biomass conversion into biochar can promote net zero emissions and CE in the framework of the UN Sustainable Development Goals (SDGs). Depending on their physico-chemical properties, biochar can become a suitable feedstock for CE. Biochar application as soil enrichment offsets 12% of CO2 emissions by land use annually. Adding biochar to soil can improve its health and agricultural productivity, while minimizing about 1/8 of CO2 emissions. Biochar can also sequester CO2 in the long-term and prevent the release of carbon back into the atmosphere after its decomposition. This practice could sequester 2.5 gigatons (Gt) of CO2 annually. With the global biochar market reaching USD 368.85 million by 2028, this work facilitates biochar with its versatile characteristics to promote carbon neutrality and CE applications.
    Matched MeSH terms: Soil/chemistry
  2. Gu H, Yan J, Liu Y, Yu X, Feng Y, Yang X, et al.
    Environ Res, 2023 May 01;224:115543.
    PMID: 36822540 DOI: 10.1016/j.envres.2023.115543
    Bioaugmentation helps to obtain a microbiome capable of remediating polycyclic aromatic hydrocarbons (PAHs). In this study, acclimation of microorganisms to soil supplemented with phenanthrene (PHE) led to enrichment with PAH-degraders, including those in Actinobacteriota and in the genera Streptomyces, Rhodococcus, Nocardioides, Sphingomonas, and Mycobacterium. Aqueous (28 °C, pH 6.5) and soil cultures inoculated with PHE-acclimated soil showed a high PHE (ca. 50 mg L-1) degradation efficiency. The PHE degradation kinetics in aqueous and soil incubations fitted to the Gompertz equation and the first-order kinetic equation, respectively. Indigenous microorganisms adapted to PHE in their environment, and this increased their capacity to degrade PHE. The effect of co-contaminants and pathway intermediates on PHE degradation showed that the degradation of PHE improved in the presence of diesel while being hindered by lubricant oil, catechol, salicylic and phthalic acid. Our findings provide theoretical and practical support for bioremediationof PAHs in the environment.
    Matched MeSH terms: Soil/chemistry
  3. Chia XK, Hadibarata T, Kristanti RA, Jusoh MNH, Tan IS, Foo HCY
    Bioprocess Biosyst Eng, 2024 May;47(5):597-620.
    PMID: 38456898 DOI: 10.1007/s00449-024-02978-6
    The use of pesticides and the subsequent accumulation of residues in the soil has become a worldwide problem. Organochlorine (OC) pesticides have spread widely in the environment and caused contamination from past agricultural activities. This article reviews the bioremediation of pesticide compounds in soil using microbial enzymes, including the enzymatic degradation pathway and the recent development of enzyme-mediated bioremediation. Enzyme-mediated bioremediation is divided into phase I and phase II, where the former increases the solubility of pesticide compounds through oxidation-reduction and hydrolysis reactions, while the latter transforms toxic pollutants into less toxic or nontoxic products through conjugation reactions. The identified enzymes that can degrade OC insecticides include dehalogenases, phenol hydroxylase, and laccases. Recent developments to improve enzyme-mediated bioremediation include immobilization, encapsulation, and protein engineering, which ensure its stability, recyclability, handling and storage, and better control of the reaction.
    Matched MeSH terms: Soil/chemistry
  4. Matlan SJ, Mukhlisin M, Taha MR
    ScientificWorldJournal, 2014;2014:569851.
    PMID: 24971384 DOI: 10.1155/2014/569851
    Soil-water characteristic curves (SWCCs) are important in terms of groundwater recharge, agriculture, and soil chemistry. These relationships are also of considerable value in geotechnical and geoenvironmental engineering. Their measurement, however, is difficult, expensive, and time-consuming. Many empirical models have been developed to describe the SWCC. Statistical assessment of soil-water characteristic curve models found that exponential-based model equations were the most difficult to fit and generally provided the poorest fit to the soil-water characteristic data. In this paper, an exponential-based model is devised to describe the SWCC. The modified equation is similar to those previously reported by Gardner (1956) but includes exponential variable. Verification was performed with 24 independent data sets for a wide range of soil textures. Prediction results were compared with the most widely used models to assess the model's performance. It was proven that the exponential-based equation of the modified model provided greater flexibility and a better fit to data on various types of soil.
    Matched MeSH terms: Soil/chemistry*
  5. Lim Kim Choo LN, Ahmed OH
    ScientificWorldJournal, 2014;2014:906021.
    PMID: 25215335 DOI: 10.1155/2014/906021
    Pineapples (Ananas comosus (L.) Merr.) cultivation on drained peats could affect the release of carbon dioxide (CO2) into the atmosphere and also the leaching of dissolved organic carbon (DOC). Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr) than under bare peat treated with chloroform (205 t CO2 ha/yr), and they were the lowest (179.6 t CO2 ha/yr) under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture.
    Matched MeSH terms: Soil/chemistry*
  6. Khari M, Kassim KA, Adnan A
    ScientificWorldJournal, 2014;2014:917174.
    PMID: 24574932 DOI: 10.1155/2014/917174
    The research on damages of structures that are supported by deep foundations has been quite intensive in the past decade. Kinematic interaction in soil-pile interaction is evaluated based on the p-y curve approach. Existing p-y curves have considered the effects of relative density on soil-pile interaction in sandy soil. The roughness influence of the surface wall pile on p-y curves has not been emphasized sufficiently. The presented study was performed to develop a series of p-y curves for single piles through comprehensive experimental investigations. Modification factors were studied, namely, the effects of relative density and roughness of the wall surface of pile. The model tests were subjected to lateral load in Johor Bahru sand. The new p-y curves were evaluated based on the experimental data and were compared to the existing p-y curves. The soil-pile reaction for various relative density (from 30% to 75%) was increased in the range of 40-95% for a smooth pile at a small displacement and 90% at a large displacement. For rough pile, the ratio of dense to loose relative density soil-pile reaction was from 2.0 to 3.0 at a small to large displacement. Direct comparison of the developed p-y curve shows significant differences in the magnitude and shapes with the existing load-transfer curves. Good comparison with the experimental and design studies demonstrates the multidisciplinary applications of the present method.
    Matched MeSH terms: Soil/chemistry*
  7. Baldeck CA, Kembel SW, Harms KE, Yavitt JB, John R, Turner BL, et al.
    Oecologia, 2016 10;182(2):547-57.
    PMID: 27337965 DOI: 10.1007/s00442-016-3686-2
    While the importance of local-scale habitat niches in shaping tree species turnover along environmental gradients in tropical forests is well appreciated, relatively little is known about the influence of phylogenetic signal in species' habitat niches in shaping local community structure. We used detailed maps of the soil resource and topographic variation within eight 24-50 ha tropical forest plots combined with species phylogenies created from the APG III phylogeny to examine how phylogenetic beta diversity (indicating the degree of phylogenetic similarity of two communities) was related to environmental gradients within tropical tree communities. Using distance-based redundancy analysis we found that phylogenetic beta diversity, expressed as either nearest neighbor distance or mean pairwise distance, was significantly related to both soil and topographic variation in all study sites. In general, more phylogenetic beta diversity within a forest plot was explained by environmental variables this was expressed as nearest neighbor distance versus mean pairwise distance (3.0-10.3 % and 0.4-8.8 % of variation explained among plots, respectively), and more variation was explained by soil resource variables than topographic variables using either phylogenetic beta diversity metric. We also found that patterns of phylogenetic beta diversity expressed as nearest neighbor distance were consistent with previously observed patterns of niche similarity among congeneric species pairs in these plots. These results indicate the importance of phylogenetic signal in local habitat niches in shaping the phylogenetic structure of tropical tree communities, especially at the level of close phylogenetic neighbors, where similarity in habitat niches is most strongly preserved.
    Matched MeSH terms: Soil/chemistry
  8. Jeyaseelan A, Murugesan K, Thayanithi S, Palanisamy SB
    Environ Res, 2024 Mar 15;245:118020.
    PMID: 38151149 DOI: 10.1016/j.envres.2023.118020
    Enhancing crop yield to accommodate the ever-increasing world population has become critical, and diminishing arable land has pressured current agricultural practices. Intensive farming methods have been using more pesticides and insecticides (biocides), culminating in soil deposition, negatively impacting the microbiome. Hence, a deeper understanding of the interaction and impact of pesticides and insecticides on microbial communities is required for the scientific community. This review highlights the recent findings concerning the possible impacts of biocides on various soil microorganisms and their diversity. This review's bibliometric analysis emphasised the recent developments' statistics based on the Scopus document search. Pesticides and insecticides are reported to degrade microbes' structure, cellular processes, and distinct biochemical reactions at cellular and biochemical levels. Several biocides disrupt the relationship between plants and their microbial symbionts, hindering beneficial biological activities that are widely discussed. Most microbial target sites of or receptors are biomolecules, and biocides bind with the receptor through a ligand-based mechanism. The biomarker action mechanism in response to biocides relies on activating the receptor site by specific biochemical interactions. The production of electrophilic or nucleophilic species, free radicals, and redox-reactive agents are the significant factors of biocide's metabolic reaction. Most studies considered for the review reported the negative impact of biocides on the soil microbial community; hence, technological development is required regarding eco-friendly pesticide and insecticide, which has less or no impact on the soil microbial community.
    Matched MeSH terms: Soil/chemistry
  9. Qutob M, Rafatullah M, Muhammad SA, Alamry KA, Hussein MA
    J Environ Manage, 2024 Feb 27;353:120179.
    PMID: 38295641 DOI: 10.1016/j.jenvman.2024.120179
    Natural soil minerals often contain numerous impurities, resulting in comparatively lower catalytic activity. Tropical soils are viewed as poor from soil organic matter, cations, and anions, which are considered the main impurities in the soil that are restricted to utilizing natural minerals as a catalyst. In this regard, the dissolved iron and hematite crystals that presented naturally in tropical soil were evaluated to activate oxidants and degrade pyrene. The optimum results obtained in this study were 73 %, and the rate constant was 0.0553 h-1 under experimental conditions [pyrene] = 300 mg/50 g, pH = 7, T = 55 °C, airflow = 260 mL/min, [Persulfate (PS)] = 1.0 g/L, and humic acid (HA) ( % w/w) = 0.5 %. The soil characterization analysis after the remediation process showed an increase in moieties and cracks of the soil aggregate, and a decline in the iron and aluminium contents. The scavengers test revealed that both SO4•- and O2•- were responsible for the pyrene degradation, while HO• had a minor role in the degradation process. In addition, the monitoring of by-products, degradation pathways, and toxicity assessment were also investigated. This system is considered an efficient, green method, and could provide a step forward to develop low-cost soil remediation for full-scale implementation.
    Matched MeSH terms: Soil/chemistry
  10. Masud MAA, Shin WS, Septian A, Samaraweera H, Khan IJ, Mohamed MM, et al.
    Sci Total Environ, 2024 May 20;926:171944.
    PMID: 38527542 DOI: 10.1016/j.scitotenv.2024.171944
    Fluoroquinolone (FQ) antibiotics have become a subject of growing concern due to their increasing presence in the environment, particularly in the soil and groundwater. This review provides a comprehensive examination of the attributes, prevalence, ecotoxicity, and remediation approaches associated with FQs in environmental matrices. The paper discusses the physicochemical properties that influence the fate and transport of FQs in soil and groundwater, exploring the factors contributing to their prevalence in these environments. Furthermore, the ecotoxicological implications of FQ contamination in soil and aquatic ecosystems are reviewed, shedding light on the potential risks to environmental and human health. The latter part of the review is dedicated to an extensive analysis of remediation approaches, encompassing both in-situ and ex-situ methods employed to mitigate FQ contamination. The critical evaluation of these remediation strategies provides insights into their efficacy, limitations, and environmental implications. In this investigation, a correlation between FQ antibiotics and climate change is established, underlining its significance in addressing the Sustainable Development Goals (SDGs). The study further identifies and delineates multiple research gaps, proposing them as key areas for future investigational directions. Overall, this review aims to consolidate current knowledge on FQs in soil and groundwater, offering a valuable resource for researchers, policymakers, and practitioners engaged in environmental management and public health.
    Matched MeSH terms: Soil/chemistry
  11. Zhong H, Tang W, Li Z, Sonne C, Lam SS, Zhang X, et al.
    Nat Food, 2024 Apr;5(4):301-311.
    PMID: 38605129 DOI: 10.1038/s43016-024-00954-7
    Contamination of rice by the potent neurotoxin methylmercury (MeHg) originates from microbe-mediated Hg methylation in soils. However, the high diversity of Hg methylating microorganisms in soils hinders the prediction of MeHg formation and challenges the mitigation of MeHg bioaccumulation via regulating soil microbiomes. Here we explored the roles of various cropland microbial communities in MeHg formation in the potentials leading to MeHg accumulation in rice and reveal that Geobacteraceae are the key predictors of MeHg bioaccumulation in paddy soil systems. We characterized Hg methylating microorganisms from 67 cropland ecosystems across 3,600 latitudinal kilometres. The simulations of a rice-paddy biogeochemical model show that MeHg accumulation in rice is 1.3-1.7-fold more sensitive to changes in the relative abundance of Geobacteraceae compared to Hg input, which is recognized as the primary parameter in controlling MeHg exposure. These findings open up a window to predict MeHg formation and accumulation in human food webs, enabling more efficient mitigation of risks to human health through regulations of key soil microbiomes.
    Matched MeSH terms: Soil/chemistry
  12. Hassan A, Hamid FS, Pariatamby A, Ossai IC, Ahmed A, Barasarathi J, et al.
    Environ Sci Pollut Res Int, 2024 Apr;31(19):28671-28694.
    PMID: 38561536 DOI: 10.1007/s11356-024-33018-1
    The research aimed to determine the influence of endophytic fungi on tolerance, growth and phytoremediation ability of Prosopis juliflora in heavy metal-polluted landfill soil. A consortium of 13 fungal isolates as well as Prosopis juliflora Sw. DC was used to decontaminate heavy metal-polluted landfill soil. Enhanced plant growth (biomass and root and shoot lengths) and production of carotenoids, chlorophyll and amino acids L-phenylalanine and L-leucine that are known to enhance growth were found in the treated P. juliflora. Better accumulations of heavy metals were observed in fungi-treated P. juliflora over the untreated one. An upregulated activity of peroxidase, catalase and ascorbate peroxidase was recorded in fungi-treated P. juliflora. Additionally, other metabolites, such as glutathione, 3,5,7,2',5'-pentahydroxyflavone, 5,2'-dihydroxyflavone and 5,7,2',3'-tetrahydroxyflavone, and small peptides, which include Lys Gln Ile, Ser Arg Ala, Asp Arg Gly, Arg Ser Ser, His His Arg, Arg Thr Glu, Thr Arg Asp and Ser Pro Arg, were also detected. These provide defence supports to P. juliflora against toxic metals. Inoculating the plant with the fungi improved its growth, metal accumulation as well as tolerance against heavy metal toxicity. Such a combination can be used as an effective strategy for the bioremediation of metal-polluted soil.
    Matched MeSH terms: Soil/chemistry
  13. Rashid SN, Hizaddin HF, Hayyan A, Chan SE, Hasikin K, Razak SA, et al.
    Environ Technol, 2024 Sep;45(23):4820-4833.
    PMID: 37953730 DOI: 10.1080/09593330.2023.2283093
    Using natural deep eutectic solvents (NADESs) as a green reagent is a step toward producing environmentally friendly and sustainable technology. This study screened three natural DESs developed using quaternary ammonium salt and organic acid to analyse their capability to extract nickel ions from contaminated mangrove soil, which are ChCl: Acetic Acid (ChCl-AceA), ChCl: Levulinic Acid (ChCl-LevA), and ChCl: Ethylene Glycol(ChCl-Eg) at molar ratio 1:2. The impact of various operating parameters such as washing agent concentration, pH solution, and contact time on the NADES performance in the dissolution of Ni ions batch experiments were performed. The optimal soil washing conditions for metal removal were 30% and 15% concentration, a 1:5 soil-liquid ratio, and pH 2 of ChCl-LevA and ChCl-AceA, respectively. A single removal washing may remove 70.8% and 70.0% Ni ions from the contaminated soil. The dissolution kinetic of Ni ions extraction onto NADES was explained using the linear kinetic pseudo and intraparticle mass transfer diffusion models. The kinetic validation demonstrates a good fit between the experimental and pseudo-second-order Lagergren data. The model's maximum Ni dissolution capacity, Qe are 51.56 mg g-1 and 52.00 mg g-1 of ChCl-LevA and ChCl-AceA, respectively. The synthesised natural-based DES has the potential to be a cost-effective, efficient, green alternative extractant to conventional solvent extraction of heavy metals.
    Matched MeSH terms: Soil/chemistry
  14. Hameed T, Ahmad I, Ullah S, Subramaniyan V, Ali I, Hussain H, et al.
    Braz J Biol, 2024;84:e282479.
    PMID: 39230079 DOI: 10.1590/1519-6984.282479
    The phytosociological survey was conducted during 2018-2020. The research area was classified into five ecological zones based on habitat, physiognomy and species composition. Pc-Ord software was used for cluster analysis and four vegetation communities were established. The Quercus baloot-Quercus incana community is situated in Sair at an altitude of 1196 (mean ± SE) m altitude with a 14.1 ± 0 slope angle and contains eleven tree species. The Pinus wallichiana- Ailanthus altissima community had a relatively small number of tree species reported in Shakawlie at 1556 (mean ± SE) with a 17.5 ± 0 slope angle. The Pinus wallichiana- Quercus incana community is distributed in Wali Kandao and Mangi Kandao at altitudes of 2030.5 (mean ± SE) m and the slope angle was 19.2 ± 1.4. This community possesses a total of twenty-one tree species and is highly diverse. Similarly, the Populus alba - Platanus orientalis group was present in Banr Pate, with an altitude of 1613 (mean ± SE) m and a 16.3 slope angle. The principal component analysis (PCA) and non-metric multidimensional scaling (NMS) ordination methods were applied to study the relationships between ecological and soil variables with trees species. The NMS ordination of axis 1 was significantly correlated with Sand% (p<0.2), Nitrogen% (p<0.1) and Pb (mg/kg) (r= 0.876751, p<0.05), while the ordination of axis 2 was significantly correlated with Silt% (p<0.2), Sand% (p<0.2), Organic matter% (p<0.2), K (mg/kg) (r=0.882433, p<0.02), Fe (mg/kg)(r=0.614833, p<0.2), Ca (mg/kg) (r=0.721712, p< 0.2) and Zn (mg/kg) (r=0.609545, p<0.2). Similarly, the PCA ordination of axis 1 revealed that it was significantly correlated with phosphorus, calcium and slope angle, while that of axis 2 was significantly correlated with altitude, zinc and manganese.
    Matched MeSH terms: Soil/chemistry
  15. Ch'ng HY, Ahmed OH, Majid NM
    ScientificWorldJournal, 2014;2014:506356.
    PMID: 25032229 DOI: 10.1155/2014/506356
    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.
    Matched MeSH terms: Soil/chemistry*
  16. Islam SM, Hashim R, Islam AB, Kurnia R
    ScientificWorldJournal, 2014;2014:328516.
    PMID: 24982941 DOI: 10.1155/2014/328516
    The popularity of low cost, lightweight, and environmentally affable masonry unit in building industry carries the need to investigate more flexible and adaptable brick component as well as to retain the requirements confirmed in building standards. In this study, potential use of local materials used as lightweight building materials in solving the economic problems of housing has been investigated. Experimental studies on peat added bricks have been carried out. It demonstrates the physicomechanical properties of bricks and investigates the influence of peat, sand, and cement solid bricks to the role of various types of constructional applications. The achieved compressive strength, spitting strength, flexural strength, unit weight, and ultrasonic pulse velocity are significantly reduced and the water absorption is increased with percentage wise replacement of peat as aggregate in the samples. The maximum 20% of (% mass) peat content meets the requirements of relevant well-known international standards. The experimental values illustrate that, the 44% volumetric replacement with peat did not exhibit any sudden brittle fracture even beyond the ultimate loads and a comparatively smooth surface is found. The application of peat as efficient brick substance shows a potential to be used for wall and a viable solution in the economic buildings design.
    Matched MeSH terms: Soil/chemistry*
  17. Adham MI, Shirazi SM, Othman F, Rahman S, Yusop Z, Ismail Z
    ScientificWorldJournal, 2014;2014:379763.
    PMID: 25152911 DOI: 10.1155/2014/379763
    Runoff potentiality of a watershed was assessed based on identifying curve number (CN), soil conservation service (SCS), and functional data analysis (FDA) techniques. Daily discrete rainfall data were collected from weather stations in the study area and analyzed through lowess method for smoothing curve. As runoff data represents a periodic pattern in each watershed, Fourier series was introduced to fit the smooth curve of eight watersheds. Seven terms of Fourier series were introduced for the watersheds 5 and 8, while 8 terms of Fourier series were used for the rest of the watersheds for the best fit of data. Bootstrapping smooth curve analysis reveals that watersheds 1, 2, 3, 6, 7, and 8 are with monthly mean runoffs of 29, 24, 22, 23, 26, and 27 mm, respectively, and these watersheds would likely contribute to surface runoff in the study area. The purpose of this study was to transform runoff data into a smooth curve for representing the surface runoff pattern and mean runoff of each watershed through statistical method. This study provides information of runoff potentiality of each watershed and also provides input data for hydrological modeling.
    Matched MeSH terms: Soil/chemistry*
  18. Mukhlisin M, Saputra A
    ScientificWorldJournal, 2013;2013:421762.
    PMID: 24282382 DOI: 10.1155/2013/421762
    In recent years many models have been proposed for measuring soil water content (θ) based on the permittivity (ε) value. Permittivity is one of the properties used to determine θ in measurements using the electromagnetic method. This method is widely used due to quite substantial differences in values of ε for air, soil, and water, as it allows the θ value to be measured accurately. The performance of six proposed models with one parameter (i.e., permittivity) and five proposed models with two or more parameters (i.e., permittivity, porosity, and dry bulk density of soil) is discussed and evaluated. Secondary data obtained from previous studies are used for comparison to calibrate and evaluate the models. The results show that the models with one parameter proposed by Roth et al. (1992) and Topp et al. (1980) have the greatest R² data errors, while for the model with two parameters, the model proposed by Malicki et al. (1996) agrees very well with the data compared with other models.
    Matched MeSH terms: Soil/chemistry*
  19. Sendi H, Mohamed MT, Anwar MP, Saud HM
    ScientificWorldJournal, 2013;2013:258562.
    PMID: 24106452 DOI: 10.1155/2013/258562
    Peat moss (PM) is the most widely used growing substrate for the pot culture. Due to diminishing availability and increasing price of PM, researchers are looking for viable alternatives for peat as a growth media component for potted plants. A pot study was conducted with a view to investigate the possibility of using spent mushroom waste (SMW) for Kai-lan (Brassica oleracea var. Alboglabra) production replacing peat moss (PM) in growth media. The treatments evaluated were 100% PM (control), 100% SMW, and mixtures of SMW and PM in different ratios like 1 : 1, 1 : 2, and 2 : 1 (v/v) with/without NPK amendment. The experiment was arranged in a completely randomized design with five replications per treatment. Chemical properties like pH and salinity level (EC) of SMW were within the acceptable range of crop production but, nutrient content, especially nitrogen content was not enough to provide sufficient nutrition to plant for normal growth. Only PM (100%) and SMW and PM mixture in 1 : 1 ratio with NPK amendment performed equally in terms of Kai-lan growth. This study confirms the feasibility of replacing PM by SMW up to a maximum of 50% in the growth media and suggests that NPK supplementation from inorganic sources is to ensure a higher productivity of Kai-lan.
    Matched MeSH terms: Soil/chemistry*
  20. Mohd Adnan SN, Yusoff S, Piaw CY
    Waste Manag Res, 2013 Jun;31(6):599-612.
    PMID: 23528999 DOI: 10.1177/0734242X13482031
    A total of 20 landfills are located in State of Selangor, Malaysia. This includes the Ampar Tenang landfill site, which was closed on 26 January 2010. It was reported that the landfill has been upgraded to a level I type of sanitary classification. However, the dumpsite area is not being covered according to the classification. In addition, municipal solid waste was dumped directly on top of the unlined natural alluvium formation. This does not only contaminate surface and subsurface soils, but also initiates the potential risk of groundwater pollution. Based on previous studies, the Ampar Tenang soil has been proven to no longer be capable of preventing pollution migration. In this study, metal concentrations of soil samples up to 30 m depth were analyzed based on statistical analysis. It is very significant because research of this type has not been carried out before. The subsurface soils were significantly polluted by arsenic (As), lead (Pb), iron (Fe), copper (Cu) and aluminium (Al). As and Pb exceeded the safe limit values of 5.90 mg/kg and 31.00 mg/kg, respectively, based on Provincial Sediment Quality Guidelines for Metals and the Interim Sediment Quality Values. Furthermore, only Cu concentrations showed a significantly decreasing trend with increasing depth. Most metals were found on clay-type soils based on the cluster analysis method. Moreover, the analysis also differentiates two clusters: cluster I-Pb, As, zinc, Cu, manganese, calcium, sodium, magnesium, potassium and Fe; cluster II-Al. Different clustering may suggest a different contamination source of metals.
    Matched MeSH terms: Soil/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links