Displaying all 12 publications

Abstract:
Sort:
  1. Razali RS, Rahmah S, Shirly-Lim YL, Ghaffar MA, Mazelan S, Jalilah M, et al.
    Sci Rep, 2024 Feb 05;14(1):2903.
    PMID: 38316820 DOI: 10.1038/s41598-024-52864-0
    This study was conducted to investigate the energy mobilisation preference and ionoregulation pattern of female tilapia, Oreochromis sp. living in different environments. Three different treatments of tilapia as physiology compromising model were compared; tilapia cultured in recirculating aquaculture system (RAS as Treatment I-RAS), tilapia cultured in open water cage (Treatment II-Cage) and tilapia transferred from cage and cultured in RAS (Treatment III-Compensation). Results revealed that tilapia from Treatment I and III mobilised lipid to support gonadogenesis, whilst Treatment II tilapia mobilised glycogen as primary energy for daily exercise activity and reserved protein for growth. The gills and kidney Na+/K+ ATPase (NKA) activities remained relatively stable to maintain homeostasis with a stable Na+ and K+ levels. As a remark, this study revealed that tilapia strategized their energy mobilisation preference in accessing glycogen as an easy energy to support exercise metabolism and protein somatogenesis in cage culture condition, while tilapia cultured in RAS mobilised lipid for gonadagenesis purposes.
    Matched MeSH terms: Sodium-Potassium-Exchanging ATPase/metabolism
  2. Tenang EM, McCaldin B
    Biochem. Int., 1988 Feb;16(2):193-8.
    PMID: 2835046
    The effects of cell density and growth in 10% foetal bovine serum and 10% newborn calf serum on the activity of the enzyme (Na+ + K+)-ATPase were studied in 3T3 and SV3T3 cells. The enzyme activity decreases in 3T3 cells grown in foetal bovine serum as the cells approach confluency while in those grown in newborn calf serum the enzyme activity increases. The (Na+ + K+)-ATPase activity does not change with increase in cell density in SV3T3 cells grown in foetal bovine serum while the enzyme activity in those grown in newborn calf serum increases with increase in cells density up to about 1.35 x 10(5) cells/sq. cm. and then decreases with further increase in cell number. At confluency it was found that the enzyme activity is higher in the SV3T3 as compared to the 3T3 cells when the cells were grown in 10% foetal bovine serum, whereas in those grown in 10% newborn calf serum the enzyme activity is higher in the 3T3 as compared to the SV3T3 cells.
    Matched MeSH terms: Sodium-Potassium-Exchanging ATPase/metabolism*
  3. Fujimoto Y, Suzuki Y, Kanaiwa T, Amiya T, Hoshi K, Fujino S
    J. Pharmacobio-dyn., 1983 Feb;6(2):128-35.
    PMID: 6306201
    The present research is on a milky sap obtained from the Antiaris toxicaria tree (Moraceae) which is called Upas or Ipoh in Indonesia. The crude sap was administered to anesthetized rats, and changes in electrocardiogram (ECG) and systemic blood pressure was observed. Biologically and pharmacologically active components were extracted from the crude sap by means of water-acetone solution. Based on the strength of chemical qualitative detection tests of the sap extract (SE), cardiac glycosides are supposed to be the main components. The SE inhibited the Na+-, K+-ATPase (EC 3.6.1.3) which was partially purified from guinea pig heart muscle. When the SE and, concurrently, authentic ouabain were applied to isolated frog heart muscles, the fall of twitch tension was observed after the increased tension on mechanograms. These facts suggest that the main components of the milky sap are cardiac glycosides, and glycosides affect Na+, K+-ATPase activity of muscle membrane and heart muscle contraction.
    Matched MeSH terms: Sodium-Potassium-Exchanging ATPase/metabolism
  4. Mailankot M, Jayalekshmi H, Chakrabarti A, Alang N, Vasudevan DM
    Indian J Exp Biol, 2009 Jul;47(7):608-10.
    PMID: 19761047
    Ethanol intoxication resulted in high extent of lipid peroxidation, and reduction in antioxidant defenses (decreased GSH, GSH/GSSG ratio, and catalase, SOD and GPx activities) and (Na+/K+)-ATPase activity in kidney. Alpha-tocopherol treatment effectively protected kidney from ethanol induced oxidative challenge and improved renal (Na+/K+)-ATPase activity. Ethanol induced oxidative stress in the kidney and decreased (Na+/K+)-ATPase activity could be reversed by treatment with ascorbic acid.
    Matched MeSH terms: Sodium-Potassium-Exchanging ATPase/metabolism
  5. Sahoo HB, Sagar R, Kumar A, Bhaiji A, Bhattamishra SK
    Biomed J, 2016 Dec;39(6):376-381.
    PMID: 28043416 DOI: 10.1016/j.bj.2016.11.003
    BACKGROUND: Apium leptophyllum (Pers.) is an annual herb with traditional appreciation for various pharmacological properties; however, the scientific information on this herb is insufficient. The aim of the present investigation was undertaken to evaluate flavonoidal fraction of A. leptophyllum fruit (FFALF) against diarrhoea on albino rats.

    METHODS: The antidiarrhoeal study was conducted by castor oil induce diarrhoea, prostaglandin E2 (PGE2) induced enteropooling and intestinal transit by charcoal meal test. The rats were divided into five groups (six/group). Group I served as control and received orally 2% acacia suspension; Group II served as standard and received orally loperamide (3 mg/kg) or atropine sulphate (5 mg/kg); Group III, IV and V served as test groups and received the FFALF at doses of 5, 10 and 20 mg/kg orally, respectively.

    RESULTS: In castor oil-induced diarrhoeal model, the FFALF significantly (p sodium-potassium ATPase (Na+K+ATPase) activity and decreased nitric oxide (NO) content in the small intestine. In prostaglandin induced enteropooling model, it significantly (p 

    Matched MeSH terms: Sodium-Potassium-Exchanging ATPase/metabolism*
  6. Moyson S, Liew HJ, Fazio A, Van Dooren N, Delcroix A, Faggio C, et al.
    PMID: 27521798 DOI: 10.1016/j.cbpc.2016.08.003
    In the present study, the effect of copper was examined in the common goldfish (Carassius auratus auratus). Fish were fasted and exposed to either a high (0.84μM), a low (0.34μM) or a control copper concentration (0.05μM) for 1 and 7days. Swimming performance was not affected by either fasting or copper exposure. Food deprivation alone had no effect on ionoregulation, but low plasma osmolality levels and plasma Na(+) were noticed in fasted fish exposed to Cu for 7days. Both gill Na(+)/K(+)-ATPase and H(+)-ATPase activities were undisturbed, while both kidney ATPase activities were up-regulated when challenged with the high Cu levels. Up-regulated kidney ATPase activities likely acted as compensatory strategy to enhance Na(+) reabsorption. However, this up-regulation was not sufficient to restore Na(+) to control levels in the highest exposure group.
    Matched MeSH terms: Sodium-Potassium-Exchanging ATPase/metabolism*
  7. Tsai JW, Liew HJ, Jhang JJ, Hung SH, Meng PJ, Leu MY, et al.
    Fish Physiol Biochem, 2018 Apr;44(2):489-502.
    PMID: 29192359 DOI: 10.1007/s10695-017-0448-y
    The mosquitofish (Gambusia affinis) naturally inhabits freshwater (FW; 1-3‰) and seawater (SW; 28-33‰) ponds in constructed wetland. To explore the physiological status and molecular mechanisms for salinity adaptation of the mosquitofish, cytoprotective responses and osmoregulation were examined. In the field study, activation of protein quality control (PQC) mechanism through upregulation of the abundance of heat shock protein (HSP) 90 and 70 and ubiquitin-conjugated proteins was found in the mosquitofish gills from SW pond compared to the individuals of FW pond. The levels of aggregated proteins in mosquitofish gills had no significant difference between FW and SW ponds. Furthermore, the osmoregulatory responses revealed that the body fluid osmolality and muscle water contents of the mosquitofish from two ponds were maintained within a physiological range while branchial Na+/K+-ATPase (NKA) expression was higher in the individuals from SW than FW ponds. Subsequently, to further clarify whether the cellular stress responses and osmoregulation were mainly induced by hypertonicity, a laboratory salinity acclimation experiment was conducted. The results from the laboratory experiment were similar to the field study. Branchial PQC as well as NKA responses were induced by SW acclimation compared to FW-acclimated individuals. Taken together, induction of gill PQC and NKA responses implied that SW represents an osmotic stress for mosquitofish. Activation of PQC was suggested to provide an osmoprotection to prevent the accumulation of aggregated proteins. Moreover, an increase in branchial NKA responses for osmoregulatory adjustment was required for the physiological homeostasis of body fluid osmolality and muscle water content.
    Matched MeSH terms: Sodium-Potassium-Exchanging ATPase/metabolism*
  8. Moyson S, Liew HJ, Diricx M, Sinha AK, Blust R, De Boeck G
    PMID: 25263807 DOI: 10.1016/j.cbpa.2014.09.017
    In the present study, the combined effects of hypoxia and nutritional status were examined in common carp (Cyprinus carpio), a relatively hypoxia tolerant cyprinid. Fish were either fed or fasted and were exposed to hypoxia (1.5-1.8mg O2L(-1)) at or slightly above their critical oxygen concentration during 1, 3 or 7days followed by a 7day recovery period. Ventilation initially increased during hypoxia, but fasted fish had lower ventilation frequencies than fed fish. In fed fish, ventilation returned to control levels during hypoxia, while in fasted fish recovery only occurred after reoxygenation. Due to this, C. carpio managed, at least in part, to maintain aerobic metabolism during hypoxia: muscle and plasma lactate levels remained relatively stable although they tended to be higher in fed fish (despite higher ventilation rates). However, during recovery, compensatory responses differed greatly between both feeding regimes: plasma lactate in fed fish increased with a simultaneous breakdown of liver glycogen indicating increased energy use, while fasted fish seemed to economize energy and recycle decreasing plasma lactate levels into increasing liver glycogen levels. Protein was used under both feeding regimes during hypoxia and subsequent recovery: protein levels reduced mainly in liver for fed fish and in muscle for fasted fish. Overall, nutritional status had a greater impact on energy reserves than the lack of oxygen with a lower hepatosomatic index and lower glycogen stores in fasted fish. Fasted fish transiently increased Na(+)/K(+)-ATPase activity under hypoxia, but in general ionoregulatory balance proved to be only slightly disturbed, showing that sufficient energy was left for ion regulation.
    Matched MeSH terms: Sodium-Potassium-Exchanging ATPase/metabolism
  9. Iezhitsa I, Agarwal R, Saad SD, Zakaria FK, Agarwal P, Krasilnikova A, et al.
    Mol Vis, 2016;22:734-47.
    PMID: 27440992
    PURPOSE: Increased lenticular oxidative stress and altered calcium/magnesium (Ca/Mg) homeostasis underlie cataractogenesis. We developed a liposomal formulation of magnesium taurate (MgT) and studied its effects on Ca/Mg homeostasis and lenticular oxidative and nitrosative stress in galactose-fed rats.

    METHODS: The galactose-fed rats were topically treated with liposomal MgT (LMgT), liposomal taurine (LTau), or corresponding vehicles twice daily for 28 days with weekly anterior segment imaging. At the end of the experimental period, the lenses were removed and subjected to analysis for oxidative and nitrosative stress, Ca and Mg levels, ATP content, Ca(2+)-ATPase, Na(+),K(+)-ATPase, and calpain II activities.

    RESULTS: The LTau and LMgT groups showed significantly lower opacity index values at all time points compared to the corresponding vehicle groups (p<0.001). However, the opacity index in the LMgT group was lower than that in the LTau group (p<0.05). Significantly reduced oxidative and nitrosative stress was observed in the LTau and LMgT groups. The lens Ca/Mg ratio in LMgT group was decreased by 1.15 times compared to that in the LVh group. Calpain II activity in the LMgT group was decreased by 13% compared to the LVh group. The ATP level and Na(+),K(+)-ATPase and Ca(2+)-ATPase activities were significantly increased in the LMgT group compared to the LVh group (p<0.05).

    CONCLUSIONS: Topical liposomal MgT delays cataractogenesis in galactose-fed rats by maintaining the lens mineral homeostasis and reducing lenticular oxidative and nitrosative stress.

    Matched MeSH terms: Sodium-Potassium-Exchanging ATPase/metabolism
  10. Zhang T, Dang M, Zhang W, Lin X
    J. Photochem. Photobiol. B, Biol., 2020 Jan;202:111705.
    PMID: 31812087 DOI: 10.1016/j.jphotobiol.2019.111705
    The procurance of gold nanoparticles in the plant extracts is an excellent way to attain nanomaterials natural and eco-friendly nanomaterials. The Dehydrated roots of Chinese Euphorbia fischeriana flowering plant are called "Lang-Du". In this study, the retrieving of gold nanoparticles from Euphorbia fischeriana root was amalgamated by standard procedure. Fabricated gold nanoparticles were portrayed through the investigations of ultraviolet and visible spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The UV-Vis and FTIR results explicated the obtained particles were sphere-shaped and the terpenoids of Euphorbia fischeriana had strong communications with gold surface. The HRTEM and XRD images exposed the produced gold nanoparticles had an extreme composition of crystal arrangement and excellent uniformed size of particles. In our study, the Isoprenaline induced myocardial damage established the elevation in TBARS, LOOH of heart tissues and notable decline in antioxidant enzymes SOD, CAT, GPx, and GSH. This biochemical result was additionally proved by histopathological assessment. Remarkably, the pretreatment with EF-AuNps(50 mg/kg b.w) illustrated stabilized levels of serum creatine and cardiotropins in myocardial infarcted animals. And further we understood the essential function of NF-ƙB, TNF-α, IL-6 signaling molecules and its way progression in the development of vascular tenderness.
    Matched MeSH terms: Sodium-Potassium-Exchanging ATPase/metabolism
  11. Shahzad H, Giribabu N, Karim K, Kassim NM, Muniandy S, Salleh N
    PLoS One, 2017;12(3):e0172765.
    PMID: 28253299 DOI: 10.1371/journal.pone.0172765
    Dysregulation of uterine fluid environment could impair successful reproduction and this could be due to the effect of environmental estrogens. Therefore, in this study, effect of quercetin, an environmental estrogen on uterine fluid and electrolytes concentrations were investigated under sex-steroid influence. Ovariectomised adult female Sprague-Dawley rats were given 10, 50 or 100mg/kg/day quercetin subcutaneously with 17-β estradiol (E) for seven days or three days E, then three days E plus progesterone (P) (E+P) treatment. Uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations were determined by in-vivo perfusion. Following sacrifice, uteri were harvested and levels of the proteins of interest were identified by Western blotting and Realtime PCR. Distribution of these proteins in the uterus was observed by immunofluorescence. Levels of uterine cAMP were measured by enzyme-linked immunoassay (EIA). Administration of quercetin at increasing doses increased uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations, but to the levels lesser than that of E. In concordant, levels of CFTR, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP in the uterus increased following increased in the doses of quercetin. Co-administration of quercetin with E caused uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations to decrease. In concordant, uterine CFTR, SLC26A6, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP decreased. Greatest effects were observed following co-administration of 10mg/kg/day quercetin with E. Co-administration of quercetin with E+P caused uterine fluid Na+ and HCO3- concentrations to increase but no changes in fluid secretion rate and Cl- concentration were observed. Co-administration of high dose quercetin (100 mg/kg/day) with E+P caused uterine CFTR, SLC26A6, AC, GPα/β and ENaC (α, β and γ) to increase. Quercetin-induced changes in the uterine fluid secretion rate and electrolytes concentrations could potentially affect the uterine reproductive functions under female sex-steroid influence.
    Matched MeSH terms: Sodium-Potassium-Exchanging ATPase/metabolism
  12. Liew HJ, Fazio A, Faggio C, Blust R, De Boeck G
    PMID: 26219478 DOI: 10.1016/j.cbpa.2015.07.011
    Interacting effects of feeding and stress on corticoid responses in fish were investigated in common carp fed 3.0% or 0.5% body mass (BM) which received no implant, a sham or a cortisol implant (250 mg/kg BM) throughout a 168 hour post-implant period (168 h-PI). At 12h-PI, cortisol implants elevated plasma cortisol, glucose and lactate. Plasma osmolality and ions remained stable, but cortisol increased gill and kidney Na(+)/K(+) ATPase (NKA) and H(+) ATPase activities. Gill NKA activities were higher at 3%-BM, whereas kidney H(+) ATPase activity was greater at 0.5%-BM. Cortisol induced liver protein mobilization and repartitioned liver and muscle glycogen. At 3%-BM, this did not increase plasma ammonia, reflecting improved excretion efficiency concomitant with upregulation of Rhesus glycoprotein Rhcg-1 in gill. Responses in glucocorticoid receptors (GR1/GR2) and mineralocorticoid receptor (MR) to cortisol elevation were most prominent in kidney with increased expression of all receptors at 24 h-PI at 0.5%-BM, but only GR2 and MR at 0.5%-BM. In the liver, upregulation of all receptors occurred at 24 h-PI at 3%-BM, whilst only GR2 and MR were upregulated at 0.5%-BM. In the gill, there was a limited upregulation: GR2 and MR at 72 h-PI and GR1 at 168 h-PI at 3%-BM but only GR2 at 72 h-PI at 0.5%-BM. Thus cortisol elevation led to similar expression patterns of cortisol receptors in both feeding regimes, while feeding affected the type of receptor that was induced. Induction of corticoid receptors occurred simultaneously with increases in Rhcg-1 mRNA expression (gill) but well after NKA and H(+) ATPase activities increased (gill/kidney).
    Matched MeSH terms: Sodium-Potassium-Exchanging ATPase/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links