AIMS: To evaluate the impact of diabetes mellitus on the outcomes of patients undergoing PCI with sirolimus-coated balloon (SCB) MagicTouch (Concept Medical, India).
METHODS: We conducted a subgroup analysis of the prospective, multicenter, investigator-initiated EASTBOURNE registry, evaluating the performance of MagicTouch SCB in patients with and without diabetes. The study primary endpoint was target lesion revascularization (TLR) at 12-month follow-up. Secondary clinical endpoints were major adverse clinical events (MACE), death, myocardial infarction (MI), and BARC 2-5 bleedings.
RESULTS: Among 2,083 enrolled patients, a total of 864 suffered from diabetes (41.5%). Patients with diabetes had a numerically higher occurrence of TLR (6.5% vs. 4.7% HR 1.38, 95%CI 0.91-2.08), all-cause death (3.8% vs. 2.6%, HR 1.81, 95%CI 0.95-3.46), and MACE (12.2% vs. 8.9%; HR 1.26 95%CI 0.92-1.74). The incidence of spontaneous MI was significantly higher among diabetic patients (3.4% vs. 1.5%, HR 2.15 95%CI 1.09-4.25); bleeding events did not significantly differ. The overall incidence of TLR was higher among in-stent restenosis (ISR) as compared to de-novo coronary lesions, irrespectively from diabetes status.
CONCLUSIONS: In the EASTBOURNE DIABETES registry, diabetic patients treated with the MagicTouch SCB did not have a significant increase in TLR when compared to non-diabetic patients; moreover, diabetic status did not affect the study device performance in terms of TLR, in both de-novo lesions and ISR.
OBJECTIVES: This study sought to understand the role of a novel SCB for the treatment of coronary artery disease.
METHODS: EASTBOURNE (All-Comers Sirolimus-Coated Balloon European Registry) is a prospective, multicenter, investigator-driven clinical study that enrolled real-world patients treated with SCB. Primary endpoint was target lesion revascularization (TLR) at 12 months. Secondary endpoints were procedural success, myocardial infarction (MI), all-cause death, and major adverse clinical events (a composite of death, MI, and TLR). All adverse events were censored and adjudicated by an independent clinical events committee.
RESULTS: A total population of 2,123 patients (2,440 lesions) was enrolled at 38 study centers in Europe and Asia. The average age was 66.6 ± 11.3 years, and diabetic patients were 41.5%. De novo lesions (small vessels) were 56%, in-stent restenosis (ISR) 44%, and bailout stenting occurred in 7.7% of the patients. After 12 months, TLR occurred in 5.9% of the lesions, major adverse clinical events in 9.9%, and spontaneous MI in 2.4% of the patients. The rates of cardiac/all-cause death were 1.5% and 2.5%, respectively. The primary outcome occurred more frequently in the ISR cohort (10.5% vs 2.0%; risk ratio: 1.90; 95% CI: 1.13-3.19). After multivariate Cox regression model, the main determinant for occurrence of the primary endpoint was ISR (OR: 5.5; 95% CI: 3.382-8.881).
CONCLUSIONS: EASTBOURNE, the largest DCB study in the coronary field, shows the safety and efficacy of a novel SCB in a broad population of coronary artery disease including small vessels and ISR patients at mid-term follow-up. (The All-Comers Sirolimus-Coated Balloon European Registry [EASTBOURNE]; NCT03085823).
AIMS: Our study aimed to evaluate the performance of a sirolimus DCB in large coronary arteries.
METHODS: We analyzed all the procedures included in the EASTBOURNE Registry (NCT03085823) enrolling patients with a clinical indication to percutaneous coronary intervention performed by a sirolimus DCB according to investigator judgment. In the present analysis, a cut-off of 2.75 mm was used to define large coronary arteries. Primary endpoint of the study was clinically driven target lesion revascularization (TLR) at 24 months whereas secondary endpoint included procedural success, myocardial infarction (MI), cardiac death and total mortality.
RESULTS: Among the 2123 patients and 2440 lesions enrolled in the EASTBOURNE study between 2016 and 2020, 757 patients/810 lesions fulfilled the criteria for the present analysis. Mean reference vessel diameter was 3.2 ± 0.3 mm with mean lesion length of 22 ± 7 mm. Procedural success was high (96%) and at 2-year follow up the device showed a good efficacy with a TLR rate of 9%. There were 34 deaths (4.5%), 30 MIs (4%) and 8 BARC type 3-5 bleedings (1.1%). In-stent restenosis (629 lesions) and de novo lesions (181) were associated with 11% and 4% rates of TLR at 2 years, respectively (p = 0.003).
CONCLUSIONS: Clinical performance of a sirolimus DCB in large coronary artery vessels shows promising signals at 2-year follow up, both in de novo and in-stent restenosis lesions.
OBJECTIVES: To determine the effectiveness of rapamycin or rapalogs in people with TSC for decreasing tumour size and other manifestations and to assess the safety of rapamycin or rapalogs in relation to their adverse effects.
SEARCH METHODS: We identified relevant studies from the Cochrane-Central-Register-of-Controlled-Trials (CENTRAL), Ovid MEDLINE and ongoing trials registries with no language restrictions. We searched conference proceedings and abstract books of conferences. Date of the last searches: 15 July 2022.
SELECTION CRITERIA: Randomised controlled trials (RCTs) or quasi-RCTs of rapamycin or rapalogs in people with TSC.
DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed the risk of bias of each study; a third review author verified the extracted data and risk of bias decisions. We assessed the certainty of the evidence using GRADE.
MAIN RESULTS: The current update added seven RCTs, bringing the total number to 10 RCTs (with 1008 participants aged 3 months to 65 years; 484 males). All TSC diagnoses were by consensus criteria as a minimum. In parallel studies, 645 participants received active interventions and 340 placebo. Evidence is low-to-high certainty and study quality is mixed; mostly a low risk of bias across domains, but one study had a high risk of performance bias (lack of blinding) and three studies had a high risk of attrition bias. Manufacturers of the investigational products supported eight studies. Systemic administration Six studies (703 participants) administered everolimus (rapalog) orally. More participants in the intervention arm reduced renal angiomyolipoma size by 50% (risk ratio (RR) 24.69, 95% confidence interval (CI) 3.51 to 173.41; P = 0.001; 2 studies, 162 participants, high-certainty evidence). In the intervention arm, more participants in the intervention arm reduced SEGA tumour size by 50% (RR 27.85, 95% CI 1.74 to 444.82; P = 0.02; 1 study; 117 participants; moderate-certainty evidence) ,and reported more skin responses (RR 5.78, 95% CI 2.30 to 14.52; P = 0.0002; 2 studies; 224 participants; high-certainty evidence). In one 18-week study (366 participants), the intervention led to 25% fewer seizures (RR 1.63, 95% CI 1.27 to 2.09; P = 0.0001) or 50% fewer seizures (RR 2.28, 95% CI 1.44 to 3.60; P = 0.0004); but there was no difference in numbers being seizure-free (RR 5.30, 95% CI 0.69 to 40.57; P = 0.11) (moderate-certainty evidence). One study (42 participants) showed no difference in neurocognitive, neuropsychiatry, behavioural, sensory and motor development (low-certainty evidence). Total adverse events (AEs) did not differ between groups (RR 1.09, 95% CI 0.97 to 1.22; P = 0.16; 5 studies; 680 participants; high-certainty evidence). However, the intervention group experienced more AEs resulting in withdrawal, interruption of treatment, or reduced dose (RR 2.61, 95% CI 1.58 to 4.33; P = 0.0002; 4 studies; 633 participants; high-certainty evidence and also reported more severe AEs (RR 2.35, 95% CI 0.99 to 5.58; P = 0.05; 2 studies; 413 participants; high-certainty evidence). Topical (skin) administration Four studies (305 participants) administered rapamycin topically. More participants in the intervention arm showed a response to skin lesions (RR 2.72, 95% CI 1.76 to 4.18; P < 0.00001; 2 studies; 187 participants; high-certainty evidence) and more participants in the placebo arm reported a deterioration of skin lesions (RR 0.27, 95% CI 0.15 to 0.49; 1 study; 164 participants; high-certainty evidence). More participants in the intervention arm responded to facial angiofibroma at one to three months (RR 28.74, 95% CI 1.78 to 463.19; P = 0.02) and three to six months (RR 39.39, 95% CI 2.48 to 626.00; P = 0.009; low-certainty evidence). Similar results were noted for cephalic plaques at one to three months (RR 10.93, 95% CI 0.64 to 186.08; P = 0.10) and three to six months (RR 7.38, 95% CI 1.01 to 53.83; P = 0.05; low-certainty evidence). More participants on placebo showed a deterioration of skin lesions (RR 0.27, 95% CI 0.15 to 0.49; P < 0.0001; 1 study; 164 participants; moderate-certainty evidence). The intervention arm reported a higher general improvement score (MD -1.01, 95% CI -1.68 to -0.34; P < 0.0001), but no difference specifically in the adult subgroup (MD -0.75, 95% CI -1.58 to 0.08; P = 0.08; 1 study; 36 participants; moderate-certainty evidence). Participants in the intervention arm reported higher satisfaction than with placebo (MD -0.92, 95% CI -1.79 to -0.05; P = 0.04; 1 study; 36 participants; low-certainty evidence), although again with no difference among adults (MD -0.25, 95% CI -1.52 to 1.02; P = 0.70; 1 study; 18 participants; low-certainty evidence). Groups did not differ in change in quality of life at six months (MD 0.30, 95% CI -1.01 to 1.61; P = 0.65; 1 study; 62 participants; low-certainty evidence). Treatment led to a higher risk of any AE compared to placebo (RR 1.72, 95% CI 1.10, 2.67; P = 0.02; 3 studies; 277 participants; moderate-certainty evidence); but no difference between groups in severe AEs (RR 0.78, 95% CI 0.19 to 3.15; P = 0.73; 1 study; 179 participants; moderate-certainty evidence).
AUTHORS' CONCLUSIONS: Oral everolimus reduces the size of SEGA and renal angiomyolipoma by 50%, reduces seizure frequency by 25% and 50% and implements beneficial effects on skin lesions with no difference in the total number of AEs compared to placebo; however, more participants in the treatment group required a dose reduction, interruption or withdrawal and marginally more experienced serious AEs compared to placebo. Topical rapamycin increases the response to skin lesions and facial angiofibroma, an improvement score, satisfaction and the risk of any AE, but not severe adverse events. With caution regarding the risk of severe AEs, this review supports oral everolimus for renal angiomyolipoma, SEGA, seizure, and skin lesions, and topical rapamycin for facial angiofibroma.
METHODS: The objective of this study is to determine the safety and efficacy of a novel crystalline sirolimus-coated balloon (cSCB) technology in an unselective, international, large-scale patient population. Percutaneous coronary interventions of native stenosis, in-stent stenosis, and chronic total occlusions with the SCB in patients with stable coronary artery disease or acute coronary syndrome were included. The primary outcome variable is the target lesion failure (TLF) rate at 12 months, defined as the composite rate of target vessel myocardial infarction (TV-MI), cardiac death or ischemia-driven target lesion revascularization (TLR). The secondary outcome variables include TLF at 24 months, ischemia driven TLR at 12 and 24 months and all-cause death, cardiac death at 12 and 24 months.
DISCUSSION: Since there is a wealth of patient-based all-comers data for iPCB available for this study, a propensity-score matched analysis is planned to compare cSCB and iPCB for the treatment of de novo and different types of ISR. In addition, pre-specified analyses in challenging lesion subsets such as chronic total occlusions will provide evidence whether the two balloon coating technologies differ in their clinical benefit for the patient.
TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Identifier: NCT04470934.
METHODS: An all-comer, worldwide single armed trial (ClinicalTrials.gov Identifier NCT02629575) was conducted to demonstrate the safety and efficacy of an ultra-thin strut, polymer-free sirolimus eluting stent (PF-SES). The primary endpoint was the 9-month target revascularization rate (TLR). Secondary endpoints included the rates of major adverse cardiac events (MACE), stent thrombosis (ST) and bleeding (BARC) in septuagenarians (≥70 years, <80 years), and in octogenarians (≥80 years) to be compared to the younger patient group (<70 years).
RESULTS: A total of 1607 patients were treated with PF-SES in the sub-70-year-old age group, 694 in septuagenarians, and 371 in the octogenarian patient group. At 9 months, the MACE rates were 7.2% in octogenarians, 5.3% in septuagenarians, and 3.0% in the younger patient group (P = 0.001). These were mostly driven by all-cause mortality (4.4% vs 1.9% vs 0.6%, P
METHODS: In an international, randomized, single-blind trial, we compared polymer-based zotarolimus-eluting stents with polymer-free umirolimus-coated stents in patients at high bleeding risk. After PCI, patients were treated with 1 month of dual antiplatelet therapy, followed by single antiplatelet therapy. The primary outcome was a safety composite of death from cardiac causes, myocardial infarction, or stent thrombosis at 1 year. The principal secondary outcome was target-lesion failure, an effectiveness composite of death from cardiac causes, target-vessel myocardial infarction, or clinically indicated target-lesion revascularization. Both outcomes were powered for noninferiority.
RESULTS: A total of 1996 patients at high bleeding risk were randomly assigned in a 1:1 ratio to receive zotarolimus-eluting stents (1003 patients) or polymer-free drug-coated stents (993 patients). At 1 year, the primary outcome was observed in 169 of 988 patients (17.1%) in the zotarolimus-eluting stent group and in 164 of 969 (16.9%) in the polymer-free drug-coated stent group (risk difference, 0.2 percentage points; upper boundary of the one-sided 97.5% confidence interval [CI], 3.5; noninferiority margin, 4.1; P = 0.01 for noninferiority). The principal secondary outcome was observed in 174 patients (17.6%) in the zotarolimus-eluting stent group and in 169 (17.4%) in the polymer-free drug-coated stent group (risk difference, 0.2 percentage points; upper boundary of the one-sided 97.5% CI, 3.5; noninferiority margin, 4.4; P = 0.007 for noninferiority).
CONCLUSIONS: Among patients at high bleeding risk who received 1 month of dual antiplatelet therapy after PCI, use of polymer-based zotarolimus-eluting stents was noninferior to use of polymer-free drug-coated stents with regard to safety and effectiveness composite outcomes. (Funded by Medtronic; ONYX ONE ClinicalTrials.gov number, NCT03344653.).
METHODS: Patients who received PF-SES were investigated in an unselected large-scale international, single-armed, multicenter, 'all comers' observational study. The primary endpoint was the 9-month target lesion revascularisation (TLR) rate, whereas secondary endpoints included the 9-month major adverse cardiac events (MACE) and procedural success rates. A priori defined subgroups such as patients with ACS, diabetes, lesion subsets and procedural characteristics relative to DAPT were investigated.
RESULTS: A total of 2877 patients of whom 1084 had ACS were treated with PF-SES (1.31±0.75 stents per patient). At 9 months, the accumulated overall TLR rate was 2.3% (58/2513). There was no significant difference between ACS and stable CAD (2.6% vs 2.1%, p=0.389). However, the overall MACE rate was 4.3% (108/2513) with a higher rate in patients with ACS when compared with the stable CAD subgroup (6.1%, 58/947 vs 3.2%, 50/1566, p<0.001).
CONCLUSIONS: PF-SES angioplasty is safe and effective in the daily clinical routine with low rates of TLR and MACE in an unselected patient population. Our data are in agreement with prior clinical findings that extended DAPT duration beyond 6 months do not improve clinical outcomes in patients with stable CAD (ClinicalTrials.gov Identifier NCT02629575).
TRIAL REGISTRATION NUMBER: NCT02629575.