Displaying all 9 publications

Abstract:
Sort:
  1. Kue CS, Ng SY, Voon SH, Kamkaew A, Chung LY, Kiew LV, et al.
    Photochem Photobiol Sci, 2018 Nov 01;17(11):1691-1708.
    PMID: 29845993 DOI: 10.1039/c8pp00113h
    BODIPYs are photosensitizers activatable by light to generate highly reactive singlet oxygen (1O2) from molecular oxygen, leading to tissue damage in the photoirradiated region. Despite their extraordinary photophysical characteristics, they are not featured in clinical photodynamic therapy. This review discusses the recent advances in the design and/or modifications of BODIPYs since 2013, to improve their potential in photodynamic cancer therapy and related areas.
    Matched MeSH terms: Singlet Oxygen
  2. Aydın Tekdaş D, Viswanathan G, Zehra Topal S, Looi CY, Wong WF, Min Yi Tan G, et al.
    Org Biomol Chem, 2016 Mar 7;14(9):2665-70.
    PMID: 26831779 DOI: 10.1039/c5ob02477c
    A novel BODIPY derivative was designed for biomedical applications. Its mono-quaternized structure ensured its water-solubility and suitable amphiphilicity. Showing no singlet oxygen generation to avoid damage to healthy cells, this new derivative proved to be an extremely promising antimicrobial agent, with activity equal or superior to ampicillin against MRS Staphylococcus strains with no short-term resistance issue. Its activity against MSS Staphylococcus strains was largely superior to those of ampicillin and reached the activity of vancomycin against MSS S. epidermidis. This latter result is in particular extremely promising for the treatment of hospital-acquired infections. Also the fluorescence properties of BODIPY allowed imaging of the uptake.
    Matched MeSH terms: Singlet Oxygen
  3. Chin Y, Lim SH, Zorlu Y, Ahsen V, Kiew LV, Chung LY, et al.
    PLoS One, 2014;9(5):e97894.
    PMID: 24840576 DOI: 10.1371/journal.pone.0097894
    Phthalocyanines are excellent photosensitizers for photodynamic therapy as they have strong absorbance in the near infra-red region which is most relevant for in vivo activation in deeper tissular regions. However, most phthalocyanines present two major challenges, ie, a strong tendency to aggregate and low water-solubility, limiting their effective usage clinically. In the present study, we evaluated the potential enhancement capability of glycerol substitution on the photodynamic properties of zinc (II) phthalocyanines (ZnPc). Three glycerol substituted ZnPc, 1-3, (tetra peripherally, tetra non-peripherally and mono iodinated tri non-peripherally respectively) were evaluated in terms of their spectroscopic properties, rate of singlet oxygen generation, partition coefficient (log P), intracellular uptake, photo-induced cytotoxicity and vascular occlusion efficiency. Tetrasulfonated ZnPc (ZnPcS4) was included as a reference compound. Here, we showed that 1-3 exhibited 10-100 nm red-shifted absorption peaks with higher molar absorptivity, and at least two-fold greater singlet oxygen generation rates compared to ZnPcS4. Meanwhile, phthalocyanines 1 and 2 showed more hydrophilic log P values than 3 consistent with the number of glycerol attachments but 3 was most readily taken up by cells compared to the rest. Both phthalocyanines 2 and 3 exhibited potent phototoxicity against MCF-7, HCT-116 and HSC-2 cancer cell-lines with IC50 ranging 2.8-3.2 µM and 0.04-0.06 µM respectively, while 1 and ZnPcS4 (up to 100 µM) failed to yield determinable IC50 values. In terms of vascular occlusion efficiency, phthalocyanine 3 showed better effects than 2 by causing total occlusion of vessels with diameter <70 µm of the chorioallantoic membrane. Meanwhile, no detectable vascular occlusion was observed for ZnPcS4 with treatment under similar experimental conditions. These findings provide evidence that glycerol substitution, in particular in structures 2 and 3, is able to improve the photodynamic properties of ZnPc.
    Matched MeSH terms: Singlet Oxygen/metabolism
  4. Kiew LV, Cheah HY, Voon SH, Gallon E, Movellan J, Ng KH, et al.
    Nanomedicine, 2017 05;13(4):1447-1458.
    PMID: 28214608 DOI: 10.1016/j.nano.2017.02.002
    In photodynamic therapy (PDT), the low absorptivity of photosensitizers in an aqueous environment reduces singlet oxygen generation efficiency and thereby decreases photosensitizing efficacy in biological conditions. To circumvent this problem, we designed a phthalocyanine-poly-L-glutamic acid conjugate (1-PG) made from a new phthalocyanine (Pc 1) monofunctionalized to allow adequate conjugation to PGA. The resulting 1-PG conjugate retained high absorptivity in the near-infrared (NIR) region at its λmax675nm in an aqueous environment. The 1-PG conjugate demonstrated good singlet oxygen generation efficiency, increased uptake by 4 T1 breast cancer cells via clathrin-mediated endocytosis, and enhanced photocytotoxic efficacy. The conjugate also displayed a high light-dark toxicity ratio, approximately 1.5-fold greater than zinc phthalocyanine at higher concentration (10 μM), an important feature for the reduction of dark toxicity and unwanted side effects. These results suggest that the 1-PG conjugate could be a useful alternative for deep tissue treatment with enhanced anti-cancer (PDT) efficacy.
    Matched MeSH terms: Singlet Oxygen/chemistry
  5. Lim SH, Yam ML, Lam ML, Kamarulzaman FA, Samat N, Kiew LV, et al.
    Mol Pharm, 2014 Sep 2;11(9):3164-73.
    PMID: 25077598 DOI: 10.1021/mp500351s
    This study aims to improve the photodynamic properties and biological effectiveness of 15(1)-hydroxypurpurin-7-lactone dimethyl ester (G2), a semisynthetic photosensitizer, for the PDT treatment of cancer. The strategy we undertook was by conjugating G2 with aspartic acid and lysine amino acid moieties. The photophysical properties, singlet oxygen generation, distribution coefficiency (Log D in octanol/PBS pH 7.4), and photostability of these analogues and their in vitro bioactivities such as cellular uptake, intracellular localization, and photoinduced cytotoxicity were evaluated. In addition, selected analogues were also investigated for their PDT-induced vasculature occlusion in the chick chorioallantoic membrane model and for their antitumor efficacies in Balb/C mice bearing 4T1 mouse mammary tumor. From the study, conjugation with aspartic acid improved the aqueous solubility of G2 without affecting its photophysical characteristics. G2-Asp showed similar in vitro and in vivo antitumor efficacies compared to the parent compound. Given the hydrophilic nature of G2-Asp, the photosensitizer is a pharmaceutically advantageous candidate as it can be formulated easily for systemic administration and has reduced risk of aggregation in vascular system.
    Matched MeSH terms: Singlet Oxygen/pharmacology; Singlet Oxygen/chemistry
  6. Khor, Soo Ping, Rahmad Zakaria, Subramaniam, Sreeramanan
    Trop Life Sci Res, 2016;27(11):139-143.
    MyJurnal
    Throughout the cryopreservation process, plants were exposed to a series of
    abiotic stresses such as desiccation and osmotic pressure due to highly concentrated
    vitrification solution. Abiotic stress stimulates the production of reactive oxygen species
    (ROS) which include hydrogen peroxide, superoxide radicals, and singlet oxygen. Higher
    production of ROS may lead to oxidative stress which contributes to the major injuries in
    cryopreserved explants. Antioxidant enzymes in plant such as ascorbate peroxidase
    (APX) can protect plants from cell damage by scavenging the free radicals. This study was
    determined based on APX enzyme activity of Aranda Broga Blue orchid’s protocorm-like
    bodies (PLBs) in response to PVS2 (Plant Vitrification Solution 2) cryopreservation
    treatments at different stages. PLBs that were precultured at 0.25 M sucrose for 3 days
    were subjected to vitrification cryopreservation method. Results obtained showed that the
    highest APX activity was achieved at PVS2 cryoprotectant treatment prior liquid nitrogen
    (LN) storage. This phenomenon indicating that accumulation of osmotic and dehydrating
    stress throughout the cryopreservation treatment resulted in oxidative burst which in turn
    leads to higher APX activity in order to control the excess production of ROS. To
    conclude, PVS2 treatment was revealed as the most detrimental step throughout
    cryopreservation treatment. Thus, this research also suggested that exogenous
    antioxidant such as ascorbic acid can be added throughout cryopreservation procedure
    especially at PVS2 treatment in the future experiments to aid in regrowth of cryopreserved
    explants by reducing oxidative stress.
    Matched MeSH terms: Singlet Oxygen
  7. Tan K, Zhang H, Lim LS, Ma H, Li S, Zheng H
    Front Immunol, 2019;10:3041.
    PMID: 32010132 DOI: 10.3389/fimmu.2019.03041
    Carotenoids are biologically active pigments that are well-known to enhance the defense and immunity of the vertebrate system. However, in invertebrates, the role of carotenoids in immunity is not clear. Therefore, this study aims to review the scientific evidence for the role of carotenoids in invertebrate immunization. From the analysis of published literatures and recent studies from our laboratory, it is obvious that carotenoids are involved in invertebrate immunity in two ways. On the one hand, carotenoids can act as antioxidant enzymes to remove singlet oxygen, superoxide anion radicals, and hydroxyl radicals, thereby reducing SOD activity and reducing the cost of immunity. In some organisms, carotenoids have been shown to promote SOD activity by up-regulating the expression of the ZnCuSOD gene. Carotenoids, on the other hand, play a role in the expression and regulation of many genes involved in invertebrate immunity, including thioredoxins (TRX), peptidoglycan recognition receptor proteins (PGRPs), ferritins, prophenoloxidase (ProPO), vitellogenin (Vg), toll-like receptor (TLRs), heat shock proteins (HSPs), and CuZnSOD gene. The information in this review is very useful for updating our understanding of the progress of carotenoid research in invertebrate immunology and to help identify topics for future topics.
    Matched MeSH terms: Singlet Oxygen
  8. Lim SH, Thivierge C, Nowak-Sliwinska P, Han J, van den Bergh H, Wagnières G, et al.
    J Med Chem, 2010 Apr 8;53(7):2865-74.
    PMID: 20199028 DOI: 10.1021/jm901823u
    To understand the effects of substitution patterns on photosensitizing the ability of boron dipyrromethene (BODIPY), two structural variations that either investigate the effectiveness of various iodinated derivatives to maximize the "heavy atom effect" or focus on the effect of extended conjugation at the 4-pyrrolic position to red-shift their activation wavelengths were investigated. Compounds with conjugation at the 4-pyrrolic position were less photocytotoxic than the parent unconjugated compound, while those with an iodinated BODIPY core presented better photocytotoxicity than compounds with iodoaryl groups at the meso-positions. The potency of the derivatives generally correlated well with their singlet oxygen generation level. Further studies of compound 5 on HSC-2 cells showed almost exclusive localization to mitochondria, induction of G(2)/M-phase cell cycle block, and onset of apoptosis. Compound 5 also extensively occluded the vasculature of the chick chorioallantoic membrane. Iodinated BODIPY structures such as compound 5 may have potential as new photodynamic therapy agents for cancer.
    Matched MeSH terms: Singlet Oxygen/metabolism
  9. Lim SH, Lee HB, Ho AS
    Photochem Photobiol, 2011 Sep-Oct;87(5):1152-8.
    PMID: 21534974 DOI: 10.1111/j.1751-1097.2011.00939.x
    In our screening for photosensitizers from natural resources, 15(1)-hydroxypurpurin-7-lactone ethyl methyl diester (compound 1) was isolated for the first time from an Araceae plant. To evaluate the efficacy of compound 1 as a photosensitizer for head and neck cancers, compound 1 was studied in reference to a known photosensitizer pheophorbide-a (Pha), in terms of photophysical properties, singlet oxygen generation and in in vitro experiments (intracellular uptake and phototoxicity assays) in two oral (HSC2 and HSC3) and two nasopharyngeal (HK1 and C666-1) cancer cell lines. In this study, compound 1 exhibited higher intracellular uptake over 24 h compared with Pha in both HSC3 and HK1 cells. When activated by ≥4.8 J cm(-2) of light, compound 1 was slightly more potent as a photosensitizer than Pha by consistently having marginally lower IC(50) values across different cell lines. In flow cytometry experiments to study the mechanism of photoactivated cell death in HSC3, compound 1 was observed to induce more pronounced apoptosis compared with Pha, which may have been driven by the transient G(2)/M cell cycle block which was also observed. These promising results on compound 1 warrant its further investigation as a clinically useful photodynamic therapy agent for head and neck cancer.
    Matched MeSH terms: Singlet Oxygen/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links