Displaying all 2 publications

Abstract:
Sort:
  1. Hasnain MS, Ansari SA, Rao S, Tabish M, Singh M, Abdullah MS, et al.
    J Chromatogr Sci, 2017 Jul 01;55(6):587-594.
    PMID: 28335023 DOI: 10.1093/chromsci/bmx010
    The present work was employing the Quality by Design approach for the development and validation of a LC-MS-MS method to support the clinical advancement in determination of sildenafil in human plasma using lorazepam as an internal standard. Sample preparation involved solid phase extraction and calibration range observed between 3 and 1,700 ng/mL. The method was systematically optimized by employing Box-Behnken design and used mobile phase flow rate, pH and composition of mobile phase as the critical factors, and assessing the design for retention time and peak area as the responses. A substantial decrease in the variability associated with the method variables was shown in optimization studies and confirmed enhanced method robustness. The present studies revealed that developed method achieves all the regulatory requirements for linearity, accuracy, precision, selectivity, sensitivity and stability for the determination of sildenafil in human plasma. There was not any significant change in the stability of the drug shown by stability studies, performed in human plasma through freeze-thaw cycles, bench-top stability, short-term stability, long-term stability and auto sampler stability. In short, this method shows satisfactory results for the analysis of sildenafil in human plasma and possesses high degree of utility in pharmacokinetic and bioequivalence studies.
    Matched MeSH terms: Sildenafil Citrate/blood*
  2. Liew KB, Loh GO, Tan YT, Peh KK
    Biomed Chromatogr, 2015 Jun;29(6):953-60.
    PMID: 25400284 DOI: 10.1002/bmc.3378
    A simple, rapid, specific and reliable UFLC coupled with ESI-MSMS assay method to simultaneously quantify sildenafil and N-desmethyl sildenafil, with loperamide as internal standard, was developed. Chromatographic separation was performed on a Thermo Scientific Accucore C18 column with an isocratic mobile phase composed of 0.1% v/v formic acid in purified water-methanol (20:80, v/v), at a flow rate of 0.3 mL/min. Sildenafil, N-desmethyl sildenafil and loperamide were detected with proton adducts at m/z 475.4 > 58.2, 461.3 > 85.2 and 477.0 > 266.1 in multiple reaction monitoring positive mode, respectively. Both analytes and internal standard were extracted by diethyl ether. The method was validated over a linear concentration range of 10-800 ng/mL for sildenafil and 10-600 ng/mL for N-desmethyl sildenafil with correlation coefficient (r(2) ) ≥0.9976 for sildenafil and (r(2) ) ≥0.9992 for N-desmethyl sildenafil. The method was precise, accurate and stable. The proposed method was applied to study the bioequivalence between a 100 mg dose of two pharmaceutical products: Viagra (original) and Edyfil (generic) products. AUC0-t , Cmax and Tmax were 2285.79 ng h/mL, 726.10 ng/mL and 0.94 h for Viagra and 2363.25 ng h/mL, 713.91 ng/mL and 0.83 hour for Edyfil. The 90% confidence interval of these parameters of this study fall within the regulatory range of 80-125%, hence they are considered as bioequivalent.
    Matched MeSH terms: Sildenafil Citrate/blood*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links