Displaying publications 1 - 20 of 255 in total

Abstract:
Sort:
  1. Abdullah NA, Md Hashim NF, Ammar A, Muhamad Zakuan N
    Molecules, 2021 Feb 03;26(4).
    PMID: 33546106 DOI: 10.3390/molecules26040775
    Cancer is one of the leading causes of death worldwide, with a mortality rate of more than 9 million deaths reported in 2018. Conventional anti-cancer therapy can greatly improve survival however treatment resistance is still a major problem especially in metastatic disease. Targeted anti-cancer therapy is increasingly used with conventional therapy to improve patients' outcomes in advanced and metastatic tumors. However, due to the complexity of cancer biology and metastasis, it is urgent to develop new agents and evaluate the anti-cancer efficacy of available treatments. Many phytochemicals from medicinal plants have been reported to possess anti-cancer properties. One such compound is known as oridonin, a bioactive component of Rabdosia rubescens. Several studies have demonstrated that oridonin inhibits angiogenesis in various types of cancer, including breast, pancreatic, lung, colon and skin cancer. Oridonin's anti-cancer effects are mediated through the modulation of several signaling pathways which include upregulation of oncogenes and pro-angiogenic growth factors. Furthermore, oridonin also inhibits cell migration, invasion and metastasis via suppressing epithelial-to-mesenchymal transition and blocking downstream signaling targets in the cancer metastasis process. This review summarizes the recent applications of oridonin as an anti-angiogenic and anti-metastatic drug both in vitro and in vivo, and its potential mechanisms of action.
    Matched MeSH terms: Signal Transduction/drug effects
  2. Patmanathan SN, Yap LF, Murray PG, Paterson IC
    J Cell Mol Med, 2015 Oct;19(10):2329-40.
    PMID: 26171944 DOI: 10.1111/jcmm.12635
    Almost all drugs approved for use in humans possess potentially beneficial 'off-target' effects in addition to their principal activity. In some cases this has allowed for the relatively rapid repurposing of drugs for other indications. In this review we focus on the potential for re-purposing FTY720 (also known as fingolimod, Gilenya(™)), an immunomodulatory drug recently approved for the treatment of multiple sclerosis (MS). The therapeutic benefit of FTY720 in MS is largely attributed to the immunosuppressive effects that result from its modulation of sphingosine 1-phosphate receptor signalling. However, this drug has also been shown to inhibit other cancer-associated signal transduction pathways in part because of its structural similarity to sphingosine, and consequently shows efficacy as an anti-cancer agent both in vitro and in vivo. Here, we review the effects of FTY720 on signal transduction pathways and cancer-related cellular processes, and discuss its potential use as an anti-cancer drug.
    Matched MeSH terms: Signal Transduction/drug effects
  3. Phang CW, Gandah NA, Abd Malek SN, Karsani SA
    Eur J Pharmacol, 2019 Jun 15;853:388-399.
    PMID: 31014923 DOI: 10.1016/j.ejphar.2019.04.032
    Flavokawain C (FKC), a naturally occurring chalcone, has previously been shown to inhibit the growth of colon carcinoma HCT 116 cells through induction of apoptosis and cell cycle arrest. However, the possible underlying mechanisms of cell death as a response to FKC treatment remains unclear. In this study, we performed proteomic analysis of HCT 116 cells treated with FKC to identify proteins that change in abundance. This was followed by bioinformatic analysis to predict possible associated molecular targets or pathways involved in the observed effects of FKC. A total of 35 proteins that changed in abundance (17 increased and 18 decreased) were identified through two-dimensional gel electrophoresis followed by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Using the Ingenuity Pathway Analysis (IPA), these proteins were predicted to be involved in cell death and survival, cell cycle, cellular growth and proliferation, protein synthesis, post-translational modification and amino acid metabolism by. Further analysis of the transcript levels of selected proteins using qPCR showed that some of the genes exhibited similar change of profile to that of the proteins'. Our results have provided novel insights into the potential molecular mechanisms underlying FKC-induced apoptosis or cell death in colon cancer cells.
    Matched MeSH terms: Signal Transduction/drug effects
  4. Watari H, Nakajima H, Atsuumi W, Nakamura T, Nanya T, Ise Y, et al.
    PMID: 30978513 DOI: 10.1016/j.cbpc.2019.04.003
    We screened 868 marine extracts in search of hematopoietic molecules resulted in findings of several extracts that proliferated Ba/F3-HuMpl cells but not the cells expressed with other hematopoietic cytokine receptors, EPO and G-CSF. Separation of the most potent extract of a Micronesian sponge Corticium sp., guided by the cell proliferation assay using Ba/F3-HuMpl cells resulted in an isolation of thrombocorticin (ThC), a novel 14 kDa protein as an active principal. ThC displayed concentration-dependent proliferation of Ba/F3-HuMpl cells, and had a stronger activity than that of eltrombopag, a small molecule drug used to treat thrombocytopenia. ThC induced phosphorylation of STAT5, suggesting that it activates Jak/STAT pathway as in the case of TPO. These results together indicated that ThC is a specific agonist for c-Mpl, although the size and shape differs largely from TPO. Here we present isolation, characterization and biological activity of ThC.
    Matched MeSH terms: Signal Transduction/drug effects
  5. Alharbi KS, Afzal O, Almalki WH, Kazmi I, Javed Shaikh MA, Thangavelu L, et al.
    Chem Biol Interact, 2022 Feb 25;354:109842.
    PMID: 35104489 DOI: 10.1016/j.cbi.2022.109842
    Nutraceuticals are dietary supplements that are used to improve health, postpone aging, prevent illnesses, and maintain the human body's correct functioning. Nutraceuticals are now garnering a lot of interest because of their nutritional and therapeutic benefits. The research indicating the relevance of nutraceuticals as a possible therapeutic candidate against inflammatory lung disease was covered in this review. Nowadays, inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, pneumonia, lung cancer, becoming highly dreadful because of their associated fatality. Inflammation is one of the cores and common factors of these diseases which is mainly associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, NF-κB p65 and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation, and initiation of the signaling pathway of the NF-κB. The secondary metabolites from natural sources are the active component that attenuates NF-κB and the associated pathway that inhibits inflammation in lung diseases. Nutraceuticals belonging to the chemical category polyphenols, alkaloids, terpenoids, flavonoids, tannins have the potential to combat the NF-κB pathway. Accordingly, this review discusses the medical value of nutraceuticals briefly and their ability to mitigate various inflammatory lung diseases through targeting inhibition of NF-κB.
    Matched MeSH terms: Signal Transduction/drug effects
  6. Kong EQZ, Subramaniyan V, Lubau NSA
    Animal Model Exp Med, 2024 Aug;7(4):444-459.
    PMID: 38853347 DOI: 10.1002/ame2.12436
    This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health, elucidating the underlying mechanisms involving the Toll-like receptor 4 (TLR4)/Nuclear factor kappa light chain enhancer of activated B cells (NF-kB) pathway and the Cytochrome P450 2E1 (CYP2E1)/reactive oxygen species (ROS)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. The TLR4/NF-kB pathway, crucial for inflammatory and immune responses, triggers the production of pro-inflammatory agents and type-1 interferon, disrupting the balance between inflammatory and antioxidant responses when tissues are chronically exposed to alcohol. Alcohol-induced dysbiosis in gut microbes heightens gut wall permeability to pathogen-associated molecular patterns (PAMPs), leading to liver cell infection and subsequent inflammation. Concurrently, CYP2E1-mediated alcohol metabolism generates ROS, causing oxidative stress and damaging cells, lipids, proteins, and deoxyribonucleic acid (DNA). To counteract this inflammatory imbalance, Nrf2 regulates gene expression, inhibiting inflammatory progression and promoting antioxidant responses. Excessive alcohol intake results in elevated liver enzymes (ADH, CYP2E1, and catalase), ROS, NADH, acetaldehyde, and acetate, leading to damage in vital organs such as the heart, brain, and lungs. Moreover, alcohol negatively affects reproductive health by inhibiting the hypothalamic-pituitary-gonadal axis, causing infertility in both men and women. These findings underscore the profound health concerns associated with alcohol-induced damage, emphasizing the need for public awareness regarding the intricate interplay between immune responses and the multi-organ impacts of alcohol consumption.
    Matched MeSH terms: Signal Transduction/drug effects
  7. Zulkhernain NS, Teo SH, Patel V, Tan PJ
    Curr Cancer Drug Targets, 2014;14(8):764-73.
    PMID: 25348017 DOI: 10.2174/1568009614666141028121347
    Targeted therapy, the treatment of cancer based on an underlying genetic alteration, is rapidly gaining favor as the preferred therapeutic approach. To date, although natural products represent a rich resource of bio-diverse drug candidates, only a few have been identified to be effective as targeted cancer therapies largely due to the incompatibilities to current high-throughput screening methods. In this article, we review the utility of a zebrafish developmental screen for bioactive natural product-based compounds that target signaling pathways that are intimately shared with those in humans. Any bioactive compound perturbing signaling pathways identified from phenotypic developmental defects in zebrafish embryos provide an opportunity for developing targeted therapies for human cancers. This model provides a promising tool in the search for targeted cancer therapeutics from natural products.
    Matched MeSH terms: Signal Transduction/drug effects
  8. Teng KT, Chang CY, Chang LF, Nesaretnam K
    Nutr J, 2014;13:12.
    PMID: 24476102 DOI: 10.1186/1475-2891-13-12
    Obesity plays a pivotal role in the development of low-grade inflammation. Dietary fatty acids are important modulators of inflammatory responses. Saturated fatty acids (SFA) and n-6 polyunsaturated fatty acids (PUFA) have been reported to exert pro-inflammatory effects. n-3 PUFA in particular, possess anti-inflammatory properties. Numerous clinical studies have been conducted over decades to investigate the impact of dietary fatty acids on inflammatory response in obese individuals, however the findings remained uncertain. High fat meals have been reported to increase pro-inflammatory responses, however there is limited evidence to support the role of individual dietary fatty acids in a postprandial state. Evidence in chronic studies is contradictory, the effects of individual dietary fatty acids deserves further attention. Weight loss rather than n-3 PUFA supplementation may play a more prominent role in alleviating low grade inflammation. In this context, the present review provides an update on the mechanistic insight and the influence of dietary fats on low grade inflammation, based on clinical evidence from acute and chronic clinical studies in obese and overweight individuals.
    Matched MeSH terms: Signal Transduction/drug effects
  9. Herr DR, Reolo MJ, Peh YX, Wang W, Lee CW, Rivera R, et al.
    Sci Rep, 2016 Apr 15;6:24541.
    PMID: 27080739 DOI: 10.1038/srep24541
    Ototoxic drugs, such as platinum-based chemotherapeutics, often lead to permanent hearing loss through apoptosis of neuroepithelial hair cells and afferent neurons of the cochlea. There is no approved therapy for preventing or reversing this process. Our previous studies identified a G protein-coupled receptor (GPCR), S1P2, as a potential mediator of otoprotection. We therefore sought to identify a pharmacological approach to prevent cochlear degeneration via activation of S1P2. The cochleae of S1pr2(-/-) knockout mice were evaluated for accumulation of reactive oxygen species (ROS) with a nitro blue tetrazolium (NBT) assay. This showed that loss of S1P2 results in accumulation of ROS that precedes progressive cochlear degeneration as previously reported. These findings were supported by in vitro cell-based assays to evaluate cell viability, induction of apoptosis, and accumulation of ROS following activation of S1P2 in the presence of cisplatin. We show for the first time, that activation of S1P2 with a selective receptor agonist increases cell viability and reduces cisplatin-mediated cell death by reducing ROS. Cumulatively, these results suggest that S1P2 may serve as a therapeutic target for attenuating cisplatin-mediated ototoxicity.
    Matched MeSH terms: Signal Transduction/drug effects
  10. Nahta R, Al-Mulla F, Al-Temaimi R, Amedei A, Andrade-Vieira R, Bay SN, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S2-18.
    PMID: 26106139 DOI: 10.1093/carcin/bgv028
    As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.
    Matched MeSH terms: Signal Transduction/drug effects
  11. Engström W, Darbre P, Eriksson S, Gulliver L, Hultman T, Karamouzis MV, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S38-60.
    PMID: 26106143 DOI: 10.1093/carcin/bgv030
    The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.
    Matched MeSH terms: Signal Transduction/drug effects*
  12. Wong SC, Kamarudin MNA, Naidu R
    Nutrients, 2021 Mar 16;13(3).
    PMID: 33809462 DOI: 10.3390/nu13030950
    Glioblastoma (GBM) is the most malignant brain tumor and accounts for most adult brain tumors. Current available treatment options for GBM are multimodal, which include surgical resection, radiation, and chemotherapy. Despite the significant advances in diagnostic and therapeutic approaches, GBM remains largely resistant to treatment, with a poor median survival rate between 12 and 18 months. With increasing drug resistance, the introduction of phytochemicals into current GBM treatment has become a potential strategy to combat GBM. Phytochemicals possess multifarious bioactivities with multitarget sites and comparatively marginal toxicity. Among them, curcumin is the most studied compound described as a potential anticancer agent due to its multi-targeted signaling/molecular pathways properties. Curcumin possesses the ability to modulate the core pathways involved in GBM cell proliferation, apoptosis, cell cycle arrest, autophagy, paraptosis, oxidative stress, and tumor cell motility. This review discusses curcumin's anticancer mechanism through modulation of Rb, p53, MAPK, P13K/Akt, JAK/STAT, Shh, and NF-κB pathways, which are commonly involved and dysregulated in preclinical and clinical GBM models. In addition, limitation issues such as bioavailability, pharmacokinetics perspectives strategies, and clinical trials were discussed.
    Matched MeSH terms: Signal Transduction/drug effects
  13. Hafizz AMHA, Zin RRM, Aziz NHA, Kampan NC, Shafiee MN
    Mol Biol Rep, 2020 Oct;47(10):8199-8207.
    PMID: 32897522 DOI: 10.1007/s11033-020-05760-5
    As the obesity rates dramatically increased across the globe, the risk of endometrial cancer (EC) has substantially increased. Measures to improve the EC outcome is utmost important, especially data have shown that women at their reproductive age are commonly affected. No doubt, surgical intervention is a standard treatment for EC. However, the fact that this cancer could arise from metabolic diseases, additional therapy by lipid-lowering agent could be utilized to change the tumour environment. We review available evidence to support the use of this agent in the clinical setting. We search available evidence on the use of statin in EC, in various settings including cell lines, animal and human study. The possible actions at different molecular pathways leading to cellular changes and proliferation of cell were evaluated. The venture in drug repositioning of statins as a chemo-preventive potential agent in EC has gained attention in gynaecological oncology practice worldwide. Lipid-lowering effect by statins may exerted a chemoprotective effect in EC, but there is still lack of evidence on statins use to improve prognosis and survival in EC. Through the cholesterol-lowering effect of statins; theoretically, it could inhibit cell growth, proliferation, migration, and lead to apoptosis. Epidemiological studies suggested that statins may improve survival rate among EC patients. However, some evidence revealed the effects were only more prominent in type II EC. Notwithstanding that several studies also showed no benefit of statins in EC. Hence we highlight the limitations of these studies in this review. In line with recent literature on the topic, statins may play a role in EC management. Future studies for a proper systematic review and randomized controlled study are needed to answer some uncertainties of statins effect in EC.
    Matched MeSH terms: Signal Transduction/drug effects
  14. Barkat HA, Das SS, Barkat MA, Beg S, Hadi HA
    Future Oncol, 2020 Dec;16(35):2959-2979.
    PMID: 32805124 DOI: 10.2217/fon-2020-0198
    Cancer is one of the leading causes of death worldwide. Regardless of advances in understanding the molecular mechanics of cancer, its treatment is still lacking and the death rates for many forms of the disease remain the same as six decades ago. Although a variety of therapeutic agents and strategies have been reported, these therapies often failed to provide efficient therapy to patients as a consequence of the inability to deliver right and adequate chemotherapeutic agents to the right place. However, the situation has started to revolutionize substantially with the advent of novel 'targeted' nanocarrier-based cancer therapies. Such therapies hold great potential in cancer management as they are biocompatible, tailored to specific needs, tolerated and deliver enough drugs at the targeted site. Their use also enhances the delivery of chemotherapeutics by improving biodistribution, lowering toxicity, inhibiting degradation and increasing cellular uptake. However, in some instances, nonselective targeting is not enough and the inclusion of a ligand moiety is required to achieve tumor targeting and enhanced drug accumulation at the tumor site. This contemporary review outlines the targeting potential of nanocarriers, highlighting the essentiality of nanoparticles, tumor-associated molecular signaling pathways, and various biological and pathophysiological barriers.
    Matched MeSH terms: Signal Transduction/drug effects
  15. Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein ZA
    J Nutr Biochem, 2021 07;93:108634.
    PMID: 33794330 DOI: 10.1016/j.jnutbio.2021.108634
    The high failure rate of the reductionist approach to discover effective and safe drugs to treat chronic inflammatory diseases has led scientists to seek alternative ways. Recently, targeting cell signaling pathways has been utilized as an innovative approach to discover drug leads from natural products. Cell signaling mechanisms have been identified playing key role in diverse diseases by inducing proliferation, cell survival and apoptosis. Phytochemicals are known to be able to modulate the cellular and molecular networks which are associated to chronic diseases including cancer-associated inflammation. In this review, the roles of dietary polyphenols (apigenin, kaempferol, quercetin, curcumin, genistein, isoliquiritigenin, resveratrol and gallic acid) in modulating multiple inflammation-associated cell signaling networks are deliberated. Scientific databases on suppressive effects of the polyphenols on chronic inflammation via modulation of the pathways especially in the recent five years are gathered and critically analyzed. The polyphenols are able to modulate several inflammation-associated cell signaling pathways, namely nuclear factor-kappa β, mitogen activated protein kinases, Wnt/β-catenin and phosphatidylinositol 3-kinase and protein kinase B via selective actions on various components of the networks. The suppressive effects of the polyphenols on the multiple cell signaling pathways reveal their potential use in prevention and treatment of chronic inflammatory disorders. Understanding the mechanistic effects involved in modulation of the signaling pathways by the polyphenols is necessary for lead identification and development of future functional foods for prevention and treatment of chronic inflammatory diseases.
    Matched MeSH terms: Signal Transduction/drug effects*
  16. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M
    Molecules, 2021 Aug 24;26(17).
    PMID: 34500560 DOI: 10.3390/molecules26175119
    α-Mangostin (AMG) is a potent anticancer xanthone that was discovered in mangosteen (Garcinia mangostana Linn.). AMG possesses the highest opportunity for chemopreventive and chemotherapeutic therapy. AMG inhibits every step in the process of carcinogenesis. AMG suppressed multiple breast cancer (BC) cell proliferation and apoptosis by decreasing the creation of cancerous compounds. Accumulating BC abnormalities and their associated molecular signaling pathways promotes novel treatment strategies. Chemotherapy is a commonly used treatment; due to the possibility of unpleasant side effects and multidrug resistance, there has been substantial progress in searching for alternative solutions, including the use of plant-derived natural chemicals. Due to the limitations of conventional cancer therapy, nanotechnology provides hope for effective and efficient cancer diagnosis and treatment. Nanotechnology enables the delivery of nanoparticles and increased solubility of drugs and drug targeting, resulting in increased cytotoxicity and cell death during BC treatment. This review summarizes the progress and development of AMG's cytotoxicity and the mechanism of death BC cells. The combination of natural medicine and nanotechnology into a synergistic capital will provide various benefits. This information will aid in the development of AMG nanoparticle preparations and may open up new avenues for discovering an effective BC treatment.
    Matched MeSH terms: Signal Transduction/drug effects
  17. Rengarajan T, Yaacob NS
    Eur J Pharmacol, 2016 Oct 15;789:8-16.
    PMID: 27377217 DOI: 10.1016/j.ejphar.2016.07.001
    Epidemiological studies show that consumption of diets rich in fruits and vegetables is associated with lower risks of cancer. This evidence has kindled interest into research on bioactive food components and has till date resulted in the identification of many compounds with cancer preventive and therapeutic potential. Among such compounds is fisetin (3,7,3,4-tetrahydroxyflavone), a flavonol that is commonly found in many fruits and vegetables such as apples, persimmons, grapes, kiwis, strawberries, onions and cucumbers. Fisetin has been shown to inhibit or retard the growth of various cancer cells in culture and implanted tumors in vivo. Fisetin targets many components of intracellular signaling pathways including regulators of cell survival and apoptosis, tumor angiogenic and metastatic switches by modulating a distinct set of upstream kinases, transcription factors and their regulators. Current evidence supports the idea that fisetin is a promising agent for cancer treatment. This review summarizes reported anticancer effects of fisetin, and re-emphasizes its potential therapeutic role in the treatment of cancer.
    Matched MeSH terms: Signal Transduction/drug effects*
  18. Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, et al.
    Oxid Med Cell Longev, 2016;2016:5276130.
    PMID: 27803762
    Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases.
    Matched MeSH terms: Signal Transduction/drug effects
  19. Arulselvan P, Tan WS, Gothai S, Muniandy K, Fakurazi S, Esa NM, et al.
    Molecules, 2016 Oct 31;21(11).
    PMID: 27809259
    In the present investigation, we prepared four different solvent fractions (chloroform, hexane, butanol, and ethyl acetate) of Moringa oleifera extract to evaluate its anti-inflammatory potential and cellular mechanism of action in lipopolysaccharide (LPS)-induced RAW264.7 cells. Cell cytotoxicity assay suggested that the solvent fractions were not cytotoxic to macrophages at concentrations up to 200 µg/mL. The ethyl acetate fraction suppressed LPS-induced production of nitric oxide and proinflammatory cytokines in macrophages in a concentration-dependent manner and was more effective than the other fractions. Immunoblot observations revealed that the ethyl acetate fraction effectively inhibited the expression of inflammatory mediators including cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor (NF)-κB p65 through suppression of the NF-κB signaling pathway. Furthermore, it upregulated the expression of the inhibitor of κB (IκBα) and blocked the nuclear translocation of NF-κB. These findings indicated that the ethyl acetate fraction of M. oleifera exhibited potent anti-inflammatory activity in LPS-stimulated macrophages via suppression of the NF-κB signaling pathway.
    Matched MeSH terms: Signal Transduction/drug effects*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links