Displaying all 4 publications

Abstract:
Sort:
  1. Sugiatno E, Samsudin AR, Ibrahim MF, Sosroseno W
    Biomed Pharmacother, 2006 May;60(4):147-51.
    PMID: 16581222
    The aim of the present study was to determine the effect of nitric oxide (NO) on the production of prostaglandin E2 (PGE2) by a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite. Cells were cultured on the HA surfaces with or without the presence of NO donors (SNAP and NAP) for 3 days. The effect of NO scavenger, carboxy PTIO, or endothelial nitric oxide synthase (eNOS) inhibitor, L-NIO, was assessed by adding this scavenger in the cultures of HA-stimulated HOS cells with or without the presence of SNAP. Furthermore, HOS cells were pre-treated with anti-human integrin alphaV antibody, indomethacin, a non-specific inhibitor, aspirin, a COX-1 inhibitor, or nimesulide, a COX-2 inhibitor, prior to culturing on HA surfaces with or without the presence of SNAP. The levels of PGE2 were determined from the 3 day culture supernatants. The results showed that the production of PGE2 by HA-stimulated HOS cells was augmented by SNAP. Carboxy PTIO suppressed but L-NIO only partially inhibited the production of PGE2 by HA-stimulated HOS cells with or without the presence of exogenous NO. Pre-treatment of the cells with anti-human integrin alphaV antibody, indomethacin or nimesulide but not aspirin suppressed the production of PGE2 by HA-stimulated HOS cells with or without the presence of NO. Therefore, the results of the present study suggest that NO may up-regulate the production of PGE2 by augmenting the COX-2 pathway initiated by the binding between HOS cell-derived integrin alphaV and HA surface.
    Matched MeSH terms: S-Nitroso-N-Acetylpenicillamine/pharmacology
  2. Sosroseno W, Sugiatno E, Samsudin AR, Ibrahim MF
    Biomed Pharmacother, 2008 Jun;62(5):328-32.
    PMID: 17988826
    The aim of the present study was to determine the effect of nitric oxide (NO) on the production of cyclic AMP (cAMP) by a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite. Cells were cultured on the HA surfaces with or without the presence of NO donors (SNAP and NAP) for 3 days. The effect of adenylyl cyclase inhibitor (SQ22536), NO scavenger (carboxy PTIO) or endothelial nitric oxide synthase (eNOS) inhibitor (L-NIO), was assessed by adding these to the cultures of HA-stimulated HOS cells with or without the presence of SNAP. Furthermore, HOS cells were pre-treated with anti-human integrin alphaV antibody prior to culturing on HA surfaces with or without the presence of SNAP. The levels of cAMP and cGMP were determined from the 3-day culture supernatants. The results showed that the production of cAMP but not cGMP by HA-stimulated HOS cells was augmented by SNAP. SQ22536 and carboxy PTIO suppressed but L-NIO only partially inhibited the production of cAMP by HA-stimulated HOS cells with or without the presence of exogenous NO. Pre-treatment of the cells with anti-human integrin alphaV antibody suppressed the production of cAMP by HA-stimulated HOS cells with or without the presence of NO. Therefore, the results of the present study suggest that NO may up-regulate the production of cAMP, perhaps, by augmenting adenylyl cyclase activity initiated by the binding between HOS cell-derived integrin alphaV and HA surface.
    Matched MeSH terms: S-Nitroso-N-Acetylpenicillamine/pharmacology
  3. Sosroseno W, Bird PS, Seymour GJ
    J Periodontal Res, 2009 Aug;44(4):529-36.
    PMID: 18973550 DOI: 10.1111/j.1600-0765.2008.01157.x
    Elevated nitric oxide (NO) has been associated with destructive periodontal disease. The aim of the present study was to test the hypothesis that exogenous NO may inhibit a protective immune response to Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) in a murine model.
    Matched MeSH terms: S-Nitroso-N-Acetylpenicillamine/pharmacology
  4. Sosroseno W, Sugiatno E
    Acta Biomed, 2008 Aug;79(2):110-6.
    PMID: 18788505
    BACKGROUND AND AIMS OF THE WORK: Nitric oxide (NO) has been reported to enhance the production of cAMP by hydroxyapatite (HA)-induced a human osteoblast cell line (HOS cells). The aim of the present study was to test the hypothesis that exogenous NO may up-regulate the proliferation of hydroxyapatite (HA)-induced HOS cells via the cyclic-AMP-protein kinase A (PKA) pathway.
    Matched MeSH terms: S-Nitroso-N-Acetylpenicillamine
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links