Displaying all 2 publications

Abstract:
Sort:
  1. Nti J, Afagbedzi S, da-Costa Vroom FB, Ibrahim NA, Guure C
    Biomed Res Int, 2021;2021:9957160.
    PMID: 34395630 DOI: 10.1155/2021/9957160
    Background: The Ghana Demographic and Health Survey 2014 report indicates that anemia among women in their reproductive age in the country stood at 42 percent, making it a severe public health problem according to the World Health Organization (WHO) classification. WHO Global Observatory data indicates that some sub-Saharan African countries have been able to reduce the prevalence of anemia among women of reproductive age compared to Ghana in 2016. To inform policy decisions, data from the Demographic and Health Surveys 2014-2018 were analyzed to determine the disparities in the prevalence of anemia and related factors among women of reproductive age in Ghana, Ethiopia, Uganda, Tanzania, and Rwanda.

    Methods: This research utilized data from the Demographic and Health Surveys 2014, 2016, 2014-2015, 2015-2016, and 2016 from Ghana, Ethiopia, Rwanda, Tanzania, and Uganda, respectively. Respondents were women aged between 15 and 49 years. Hemoglobin levels were measured by HemoCue hemoglobin meter. 45,299 women data were extracted from the five countries with 4,644, 14,923, 6,680, 13,064, and 5,988 from Ghana, Ethiopia, Rwanda, Tanzania, and Uganda, respectively. Association between anemia and selected predictive variables was assessed using Pearson's chi-square test statistic. Poisson regression with robust standard errors was used to estimate the prevalence rate ratios of developing anemia. The deviance goodness of fit test was employed to test the fit of the Poisson model to the data set.

    Results: There was a statistically significant difference in prevalence of 1,962 (42.3%), 3,527 (23.6%), 1,284 (19.3%), 5,857 (44.8%), and 1,898 (31.7%) for Ghana, Ethiopia, Rwanda, Tanzania, and Uganda, respectively, χ 2 = 2,181.86 and p value < 0.001. Parity, pregnancy status, and contraceptives significantly increased the prevalence rate ratio of a woman developing anemia. Women in Ethiopia with a parity of six or more were 58% more likely to develop anemia than those with parity of zero. Tanzanian women who were pregnant had a 14% increased rate ratio of developing anemia. Factors that significantly decreased anemia in this study were wealth index, women's age, and women's highest level of education. Women who were in the higher education category in Ethiopia were 57% less likely to develop anemia. Ugandan women in the richest category of the wealth index were 28% less likely to develop anemia. Rwandan women in the middle category of the wealth index were 20% less likely to develop anemia. Women who were within the 45-49 age category in Ethiopia were 48% less likely to develop anemia.

    Conclusion: The individual country governments should encourage the implementation of increasing female enrollment in higher education. Women in their reproductive age should be encouraged to use modern contraceptives to reduce their anemia prevalence.

    Matched MeSH terms: Rwanda/epidemiology
  2. Carta MG, Scano A, Lindert J, Bonanno S, Rinaldi L, Fais S, et al.
    Eur Rev Med Pharmacol Sci, 2020 08;24(15):8226-8231.
    PMID: 32767354 DOI: 10.26355/eurrev_202008_22512
    OBJECTIVE: To explore whether the climate has played a role in the COVID-19 outbreak, we compared virus lethality in countries closer to the Equator with others. Lethality in European territories and in territories of some nations with a non-temperate climate was also compared.

    MATERIALS AND METHODS: Lethality was calculated as the rate of deaths in a determinate moment from the outbreak of the pandemic out of the total of identified positives for COVID-19 in a given area/nation, based on the COVID-John Hopkins University website. Lethality of countries located within the 5th parallels North/South on 6 April and 6 May 2020, was compared with that of all the other countries. Lethality in the European areas of The Netherlands, France and the United Kingdom was also compared to the territories of the same nations in areas with a non-temperate climate.

    RESULTS: A lower lethality rate of COVID-19 was found in Equatorial countries both on April 6 (OR=0.72 CI 95% 0.66-0.80) and on May 6 (OR=0.48, CI 95% 0.47-0.51), with a strengthening over time of the protective effect. A trend of higher risk in European vs. non-temperate areas was found on April 6, but a clear difference was evident one month later: France (OR=0.13, CI 95% 0.10-0.18), The Netherlands (OR=0.5, CI 95% 0.3-0.9) and the UK (OR=0.2, CI 95% 0.01-0.51). This result does not seem to be totally related to the differences in age distribution of different sites.

    CONCLUSIONS: The study does not seem to exclude that the lethality of COVID-19 may be climate sensitive. Future studies will have to confirm these clues, due to potential confounding factors, such as pollution, population age, and exposure to malaria.

    Matched MeSH terms: Rwanda/epidemiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links