Evidence suggests that prolonged blue-light exposure can impact vision; however, less is known about its impact on non-visual higher-order functions in the brain, such as learning and memory. Blue-light-blocking lenses (BBLs) claim to reduce these potential impacts. Hence, we assessed structural and functional hippocampal alterations following blue-light exposure and the protective efficacy of BBLs. Male Wistar rats were divided into (n = 6 in each group) normal control (NC), blue-light exposure (LE), and blue-light with BBLs (Crizal Prevencia, CP and DuraVision Blue, DB) groups. After 28 days of light exposure (12:12 light: dark cycle), rats were trained for the Morris water maze memory retention test, and brain tissues were sectioned for hippocampal neuronal analysis using Golgi and Cresyl violet stains. The memory retention test was significantly delayed (p < 0.05) in LE compared with DB groups on day 1 of training. Comparison of Golgi-stained neurons showed significant structural alterations, particularly in the basal dendrites of hippocampal neurons in the LE group, with BBLs significantly mitigating these structural changes (p < 0.05). Comparison of Cresyl-violet-stained neurons revealed significantly (p < 0.001) increased degenerated hippocampal neurons in LE rats, with fewer degenerated neurons in the CP lens group for CA1 neurons (p < 0.05), and for both CP and DB groups (p < 0.05) for CA3 neurons. Thus, in addition to documented effects on visual centers, high-level blue-light exposure also results in degeneration in hippocampal neurons with associated behavioral deficits. These changes can be partially ameliorated with blue-light-blocking lenses.
Lentiviruses (genus Lentivirus) are complex retroviruses that infect a broad range of mammals, including humans. Unlike many other retrovirus genera, lentiviruses have only rarely been incorporated into the mammalian germline. However, a small number of endogenous retrovirus (ERV) lineages have been identified, and these rare genomic "fossils" can provide crucial insights into the long-term history of lentivirus evolution. Here, we describe a previously unreported endogenous lentivirus lineage in the genome of the South African springhare (Pedetes capensis), demonstrating that the host range of lentiviruses has historically extended to rodents (order Rodentia). Furthermore, through comparative and phylogenetic analysis of lentivirus and ERV genomes, considering the biogeographic and ecological characteristics of host species, we reveal broader insights into the long-term evolutionary history of the genus.
Many trichostrongyloid species parasitizing rodents in Malaysia were described in 1967 in a thesis that was never published. Some of these species have since been redescribed sometimes with, sometimes without reference to the thesis. The remaining species are redescribed using information given in the thesis and certain additional morphological data (in particular, the synlophe) taken from study of the paratypes. The species are reclassified according to criteria established in the most recent classification. The following genera are proposed: Brevistriatinae: - Macrostrongylus n. gen. characterized by a caudal bursa of Calypsostrongylus type and absence of synlophe. Nippostrongylinae: - Malaistrongylus n. gen. characterized by a synlophe of Heligmonoides type but with a larger number of ridges and by the fusion of rays 4 and 5 in the caudal bursa. - Rattus strongylus n. gen. characterized by small, subequal dorsal left ridges and a total number of ridges less than 20. - Sabanema n. gen. characterized by small subequal dorsal left ridges and a total number of ridges greater than 30. The species under consideration are the following: Hepatojarakus malayae Yeh, 1955; Pithecostrongylus bicapitatus n. sp. (= P. bicapitatus Ow Yang, 1967, in litt); Macrostrongylus ratti n. gen., n. sp. (= Macrostrongylus ratti Ow Yang, 1967, in litt.); Calypsostrongylus malayensis Durette-Desset, 1976 (= Brevistriata malayensis Ow Yang, 1967, in litt); Fissicauda callosciuri (Supperer et Kutzer, 1964); Fissicauda brevispicula n. sp. (= Brevistriata brevispicula Ow Yang, 1967, in litt.); Nippostrongylus brasiliensis (Travassos, 1914); Orientostrongylus tenorai Durette-Desset, 1970 (= Longistriata selangora Ow Yang, 1967, in litt.); O. krishnansamyi Durette-Desset et Lim-Boo-Liat, 1974 (= Longistriata malaccae Ow Yang, 1967, in litt.); Heligmonoides bulbosus n. sp. (= Heligmonina (Heligmonoides) bulbosa Ow Yang, 1967, in litt.); Heligmonoides lanceolatus n. sp. (= Heligmonina (Heligmonoides) lanceolata Ow Yang 1967, in litt.); Malaistrongylus odontospicularis n. gen., n. sp. (= Malaistrongylus odontospicularis Ow Yang, 1967, in litt.); Paraheligmonelloides triangulus n. sp. (= Longistriata triangulum Ow Yang, 1967, in litt.); P. annandalei n. sp. (= Longistriata annandalei Ow Yang, 1967, in litt.); P. rajah n. sp. (= Heligmonina (Heligmonoides) rajah Ow Yang, 1967, in litt.); Rattustrongylus odontoconus n. gen., n. sp. (= Longistriata odontocona Ow Yang, 1967, in litt.); R. rotundoconus n. sp. (= Longistriata rotundocona Ow Yang, 1967, in litt.); Sabanema sabana n. gen., n. sp. (= Longistriata sabana Ow Yang, 1967, in litt.); S. kepongi n. sp. (= Longistriata kepongi Ow Yang,
Description of four new species of Heligmosome Nematodes parasites of the gut of Trichys lipura: --Heligmonella limbooliati n. sp. has a synlophe of Heligmonella-type and a bursa related to Cordicauda. --Cordicauda trichysi n. sp. is characterized by the relatively small dorsal lobe of the bursa, numerous cuticular ridges and the origin of the 8th rib at the distal third of the dorsal rib. --C. malayensis is closely related to C. trichysi (the female of the two species are morphologically identical but the two species can be separated by the larger dorsal lobe of the bursa and the longer spicula of C. malayensis). --C. magnabursa n. sp. is separated from the other species of the genus by the peculiar morphology of the bursa and the female's tail, dorsally bent. The fauna of Trichys is compared to that of Atherurss africanus, which is parasitized by 8 coparasites species: One Heligmonella and seven Paraheligmonina. From a phyletic as well as an ecological point of view (relative abundance and species location in the gut) the two fauna seem to have evolved in a parallel way, one in Africa, one in Asia, from a single Heligmonella type Nematode, after the host's partition.
The fleas (Siphonaptera: Pygiopsyllidae) Farhangia quattuordecimdentata sp. n. and Farhangia sedecimdentata sp. n. are described from pygmy squirrels (Prosciurillus spp.), and Nestivalius sulawesiensis sp. n. from murine rodents, all from Sulawesi, Indonesia. Both new species of Farhangia were collected in Central Sulawesi (Sulawesi Tengah); F. quattuordecimdentata sp. n. was recovered mainly from P. murinus, whereas F. sedecimdentata sp. n. was recovered mainly from P. leucomus. These new species are compared with the two previously described species of Farhangia: F. celebensis (Ewing) from P. murinus in North Sulawesi (Sulawesi Utara) and F. sciuri (Ewing) from the tree squirrel Callosciurus prevosti in Sabah (Borneo). Nestivalius sulawesiensis sp. n. was collected from six species of endemic murine rodents in both North and Central Sulawesi. It is compared to the morphologically similar N. pomerantzi (Traub) from Mindanao, which parasitizes murine hosts that are endemic to the Philippines.
BACKGROUND: SARS-CoV-2 is believed to have originated from a spillover event, where the virus jumped from bats to humans, leading to an epidemic that quickly escalated into a pandemic by early 2020. Despite the implementation of various public health measures, such as lockdowns and widespread vaccination efforts, the virus continues to spread. This is primarily attributed to the rapid emergence of immune escape variants and the inadequacy of protection against reinfection. Spillback events were reported early in animals with frequent contact with humans, especially companion, captive, and farmed animals. Unfortunately, surveillance of spillback events is generally lacking in Malaysia. Therefore, this study aims to address this gap by investigating the presence of SARS-CoV-2 neutralising antibodies in wild rodents in Sarawak, Malaysia.
RESULTS: We analysed 208 archived plasma from rodents collected between from 2018 to 2022 to detect neutralising antibodies against SARS-CoV-2 using a surrogate virus neutralisation test, and discovered two seropositive rodents (Sundamys muelleri and Rattus rattus), which were sampled in 2021 and 2022, respectively.
CONCLUSION: Our findings suggest that Sundamys muelleri and Rattus rattus may be susceptible to natural SARS-CoV-2 infections. However, there is currently no evidence supporting sustainable rodent-to-rodent transmission.
Linear stability analysis was used to investigate the onset of Marangoni convection in a two-layer system. The system comprised a saturated porous layer over which was a layer of the same fluid. The fluid was heated from below and the upper free surface was deformable. At the interface between the fluid and the porous layer, the Beavers-Joseph slip condition was used and in the porous medium the Darcy law was employed to describe the flow. Predictions for the onset of convection were obtained from the analysis by the perturbation technique. The effect of surface deformation and depth ratio, z (which is equal to the depth of the fluid layer/depth of the porous layer) on the onset of fluid motion was studied in detail.
Hantaviruses are infectious agents that can cause diseases resulting in deaths in humans and are hosted by rodents without affecting the hosts themselves. A simple mathematical model describing the spread of the Hantavirus infection in rodents has been proposed and developed by Abramson and Kenkre where the model takes into account the temporal and spatial characteristics of this infection. In this paper, we extended this model to include the process of harvesting and study the impact of different harvesting strategies in the spread of the Hantavirus infection in rodents. Several numerical simulations were carried out and the results are discussed.
Paramyxoviruses have been shown to infect a wide range of hosts, including rodents, and humans. Several novel murine paramyxoviruses have been discovered in the last several decades. Although these viruses are unclassified, they are recognized as Beilong virus, Mojiang virus (MojV), and Tailam virus in rats, Jeilongvirus, Nariva, Paju Apodemus paramyxovirus-1 and -2 in mice, and Pentlands paramyxovirus-1, -2, and -3 in squirrels. These paramyxoviruses were reported mainly in China and a few other countries like Australia, the Republic of Korea, Trinidad, and France. In June 2012, it becomes a great concern in China whereby, three miners were reported dead potentially caused by a novel zoonotic MojV, a henipa-like virus isolated from tissue samples of rats from the same cave. Rats are considered to be natural hosts for the MojV from the literature research. The classified paramyxovirus, Sendai virus in rodents is also reviewed. Paramyxoviruses infection in rodents leads to respiratory distress such as necrotizing rhinitis, tracheitis, bronchiolitis, and interstitial pneumonia. Infections caused by paramyxoviruses often spread between species, manifesting disease in spillover hosts, including humans. This review focuses on the paramyxoviruses in rodents, including the epidemiological distributions, transmission and pathogenesis, clinical manifestations, diagnostic methods, and control and prevention of paramyxoviruses infection to provide a better understanding of these highly mutating viruses.
Rat bocavirus (RBoV) and rodent bocavirus (RoBoV) have previously been detected in Rattus norvegicus; however, these viruses have not been reported in rodent populations in Malaysia. We investigated the presence of RBoV and RoBoV in archived rodent specimens. DNA barcoding of the rodent cytochrome c oxidase gene identified five different species: Rattus tanezumi R3 mitotype, Rattus tiomanicus, Rattus exulans, Rattus argentiventer, and Rattus tanezumi sensu stricto. Three spleens were positive for RBoV (1.84%; 3/163), but no RoBoV was detected. Phylogenetic analyzes of the partial non-structural protein 1 gene grouped Malaysian RBoV strains with RBoV strains from China. Further studies among rats from different geographical locations are warranted for this relatively new virus.
Fifty-one Rickettsia tsutsugamushi isolates from small mammals collected in central Peninsular Malaysia serologically characterized by direct immunofluorescence using eight prototype strains. Karp-related (TA763, TA686, TA716) antigens were found in 90.2% of the isolates.
1. Electrophoretic variations of 9 erythrocyte proteins, coded by a separate gene locus each, were analysed in and among the 5 Malayan species of Rattus belonging to the subgenus Lenothrix. 2. The average proportion of loci heterozygous per individual for the taxa analysed is 0.037. 3. The results obtained confirm the specific status of the 5 taxa studied. With respect to the relative affinities among the species studied, the present results could resolve the discrepancies between conclusions based on morphological evidence and those based on cytological evidence. 4. The 5 species of Rattus studied may be assigned to 4 groups and comparative data suggest that these groups are relatively distantly related to one another.
The Borrelia genus consists of spirochete bacteria known to cause Lyme disease (LD) and relapsing fever in humans. Borrelia pathogens are commonly transmitted via arthropod vectors such as ticks, mites, or lice. Here, we report the molecular screening of LD group Borrelia sp. from ticks (Acari: Ixodidae) collected from rodents trapped in recreational forests and a semiurban residential area in the Selangor state in Malaysia. Of 156 adult ticks surveyed, 72 ticks were determined as positive for Borrelia sp. by polymerase chain reaction (PCR). All Borrelia PCR-positive ticks belonged to the Ixodes granulatus Supino species. Borrelia sp. was not detected in other tick species examined, including Dermacentor sp. and Amblyomma sp. ticks. Thirteen Borrelia PCR-positive tick samples were selected for further sequence analyses. Phylogenetic analyses of partial flaB gene sequences revealed that the Borrelia sp. were closely related to the LD group borreliae, Borrelia yangtzensis; a novel Borrelia genospecies reported in East Asian countries including Japan, Taiwan, and China. To our knowledge, this is the first report of Borrelia sp. related to Borrelia yangtzensis detected in Malaysia and Southeast Asia. The zoonotic potential of the Borrelia sp. reported here merits further investigation, as it may explain the previously reported serological evidence for borrelial infections in Malaysia.
Leptospirosis, a widespread zoonotic disease, is a public health problem, especially in major urban centres, and is mainly reported to be associated with rats. In Malaysia, focus has been primarily given to the Leptospira prevalence in rodents per se, but there is lack of information on the microhabitat structure of the outbreak areas. We aimed to determine the diversity of small mammal species, microhabitat types, and their prevalence of pathogenic Leptospira spp. in the outbreak areas, which were categorized as urban, semi-urban, and recreational forests. Sampling involved deploying 100 to 300 live traps at each study site. Kidney samples were extracted from selected individuals, for screening of pathogenic Leptospira spp. by PCR. Out of 537 individuals from 15 small mammal species captured, 4 species were recorded from urban, 13 from semi-urban, and 11 from recreational forest sites. From 389 individuals screened, 58 were tested positive for pathogenic Leptospira. Recreational forests recorded the highest prevalence with 19.4% (n = 93), followed by urban, 16.6% (n = 163) and semi-urban sites with 9.8% (n = 133). Seven rodent species were tested positive for pathogenic Leptospira from all areas. R. norvegicus was found to harbour the highest prevalence (66.7%) in urban, R. rattus (53.8%) in semi-urban, whereby M. whiteheadi (44.4%) in recreational forest sites. Microhabitat analysis revealed that rubbish quantity contributed especially strongly to a high prevalence of Leptospira. This study contributes to understanding of the host and microhabitat preferences of Leptospira, which is important in controlling the spread of this disease in human's landscapes.
Hemoprotozoans are important pathogens of animals and humans, among which some species have zoonotic significance. The prevalence of different hemoprotozoa and Anaplasma spp. in larger mammals have been reported from different regions of the world. But, very few studies have been conducted to estimate the prevalence of hemoprotozoa in rodents and shrews of South-East Asia. The study assessed the prevalence of hemoprotozoa and Anaplasma spp. in rodents and shrews of Bangladesh. Blood samples (n=451) were collected from rodents and shrews between June 2011 and June 2013 and July-December 2015 from 4 land gradients of Bangladesh. Giemsa-stained blood smears revealed that 13% of animals were harboring hemoprotozoa (4.7% Babesia spp., 0.67% Plasmodium spp.), and Anaplasma spp. (7.5%). The study may serve as a guide for future hemoparasitic research of rodents and shrews.