MATERIALS AND METHODS: Eight patients with level IV inferior vena cava thrombi not extending into the atrium underwent transabdominal-transdiaphragmatic robot-assisted inferior vena cava thrombectomy obviating cardiopulmonary bypass/deep hypothermic circulatory arrest (cardiopulmonary bypass-free group) by an expert team comprising urological, hepatobiliary, and cardiovascular surgeons. The central diaphragm tendon and pericardium were transabdominally dissected until the intrapericardial inferior vena cava were exposed and looped proximal to the cranial end of the thrombi under intraoperative ultrasound guidance. As controls, 14 patients who underwent robot-assisted inferior vena cava thrombectomy with cardiopulmonary bypass (cardiopulmonary bypass group) and 25 patients who underwent open thrombectomy with cardiopulmonary bypass/deep hypothermic circulatory arrest (cardiopulmonary bypass/deep hypothermic circulatory arrest group) were included. Clinicopathological, operative, and survival outcomes were retrospectively analyzed.
RESULTS: Eight robot-assisted inferior vena cava thrombectomies were successfully performed without cardiopulmonary bypass, with 1 open conversion. The median operation time and first porta hepatis occlusion time were shorter, and estimated blood loss was lower in the cardiopulmonary bypass-free group as compared to the cardiopulmonary bypass group (540 vs 586.5 minutes, 16.5 vs 38.5. minutes, and 2,050 vs 3,500 mL, respectively). Severe complications (level IV-V) were also lower in the cardiopulmonary bypass-free group than in cardiopulmonary bypass and cardiopulmonary bypass/deep hypothermic circulatory arrest groups (25% vs 50% vs 40%). Oncologic outcomes were comparable among the 3 groups in short-term follow-up.
CONCLUSIONS: Pure transabdominal-transdiaphragmatic robot-assisted inferior vena cava thrombectomy without cardiopulmonary bypass/deep hypothermic circulatory arrest represents as an alternative minimally invasive approach for selected level IV inferior vena cava thrombi.
MATERIALS AND METHODS: A search for related literature was conducted in three search engines' databases, Web of Science, Scopus, and IEEE Xplore. Thematic keywords were used to identify articles in the recent ten years in titles, keywords, and abstracts. The retrieved articles were filtered, analysed, and evaluated based on specific inclusion and exclusion criteria.
RESULTS: A total of 208 studies were retrieved, while 166 met the inclusion criteria. The selected studies were reviewed according to the type of robot, the participants, objectives, and methods. 68 robots were used in all studies, NAO robot was used in 30.5% of those studies. The total number of participants in all studies was 1671. The highest percentage of the studies reviewed were dedicated to augmenting the learning skills.
CONCLUSIONS: Robots and the associated schemes were used to determine their feasibility and validity for augmenting the learning skills of autistic children. Most of the studies reviewed were focused on improving the social communication skills of autistic children and measuring the extent of robot mitigation of stereotyped autistic behaviours.Implications for rehabilitationSocial robots are not considered as promising tools to be utilized for rehabilitation of autistic children only, but also has been used for children and young people with severe intellectual disability.Rehabilitation for individuals with ASD using robots can augment their cognitive and social skills, but further studies should be conducted to clarify its effectiveness based on other factors such as sex, age and IQ of the participates.Robotic-based rehabilitation is not limited to the physical robots only, but virtual robots have been used also, whereas each of which can be used individually or simultaneously. However, further study is required to assess the extent of its efficiency and effectiveness for both cases.