Displaying all 7 publications

Abstract:
Sort:
  1. Gardner EM, Bruun-Lund S, Niissalo M, Chantarasuwan B, Clement WL, Geri C, et al.
    Proc Natl Acad Sci U S A, 2023 Jul 11;120(28):e2222035120.
    PMID: 37399402 DOI: 10.1073/pnas.2222035120
    Studies investigating the evolution of flowering plants have long focused on isolating mechanisms such as pollinator specificity. Some recent studies have proposed a role for introgressive hybridization between species, recognizing that isolating processes such as pollinator specialization may not be complete barriers to hybridization. Occasional hybridization may therefore lead to distinct yet reproductively connected lineages. We investigate the balance between introgression and reproductive isolation in a diverse clade using a densely sampled phylogenomic study of fig trees (Ficus, Moraceae). Codiversification with specialized pollinating wasps (Agaonidae) is recognized as a major engine of fig diversity, leading to about 850 species. Nevertheless, some studies have focused on the importance of hybridization in Ficus, highlighting the consequences of pollinator sharing. Here, we employ dense taxon sampling (520 species) throughout Moraceae and 1,751 loci to investigate phylogenetic relationships and the prevalence of introgression among species throughout the history of Ficus. We present a well-resolved phylogenomic backbone for Ficus, providing a solid foundation for an updated classification. Our results paint a picture of phylogenetically stable evolution within lineages punctuated by occasional local introgression events likely mediated by local pollinator sharing, illustrated by clear cases of cytoplasmic introgression that have been nearly drowned out of the nuclear genome through subsequent lineage fidelity. The phylogenetic history of figs thus highlights that while hybridization is an important process in plant evolution, the mere ability of species to hybridize locally does not necessarily translate into ongoing introgression between distant lineages, particularly in the presence of obligate plant-pollinator relationships.
    Matched MeSH terms: Reproductive Isolation
  2. Polgar G, Zaccara S, Babbucci M, Fonzi F, Antognazza CM, Ishak N, et al.
    J Fish Biol, 2017 May;90(5):1926-1943.
    PMID: 28239874 DOI: 10.1111/jfb.13276
    A study was conducted on the habitat distribution of four sympatric species of Periophthalmus (the silver-lined mudskipper Periophthalmus argentilineatus, the slender mudskipper Periophthalmus gracilis, the kalolo mudskipper Periophthalmus kalolo and the Malacca mudskipper Periophthalmus malaccensis) from northern Sulawesi. Molecular phylogenetic reconstructions based on one mtDNA marker (16S) were used to validate the morphological taxa, identifying five molecular clades. Periophthalmus argentilineatus includes two molecular species, which are named Periophthalmus argentilineatus clades F and K. Multivariate direct gradient analysis show that these species form three distinct ecological guilds, with the two molecular species occurring in different guilds. Periophthalmus clade F is ecologically eurytypic; Periophthalmus clade K and P. kalolo are prevalent in ecosystems isolated by strong oceanic currents and at shorter distances from the sea; P. gracilis plus P. malaccensis are prevalent in ecosystems connected by shallow coastal waters, in vegetated habitats at larger distances from the sea. This indicates for the first time that mudskipper species exhibit a range of adaptations to semiterrestrialism not only within genera, but even within morphospecies, delineating a much more complex adaptive scenario than previously assumed.
    Matched MeSH terms: Reproductive Isolation*
  3. Aketarawong N, Isasawin S, Sojikul P, Thanaphum S
    Zookeys, 2015.
    PMID: 26798262 DOI: 10.3897/zookeys.540.10058
    The Carambola fruit fly, Bactrocera carambolae, is an invasive pest in Southeast Asia. It has been introduced into areas in South America such as Suriname and Brazil. Bactrocera carambolae belongs to the Bactrocera dorsalis species complex, and seems to be separated from Bactrocera dorsalis based on morphological and multilocus phylogenetic studies. Even though the Carambola fruit fly is an important quarantine species and has an impact on international trade, knowledge of the molecular ecology of Bactrocera carambolae, concerning species status and pest management aspects, is lacking. Seven populations sampled from the known geographical areas of Bactrocera carambolae including Southeast Asia (i.e., Indonesia, Malaysia, Thailand) and South America (i.e., Suriname), were genotyped using eight microsatellite DNA markers. Genetic variation, genetic structure, and genetic network among populations illustrated that the Suriname samples were genetically differentiated from Southeast Asian populations. The genetic network revealed that samples from West Sumatra (Pekanbaru, PK) and Java (Jakarta, JK) were presumably the source populations of Bactrocera carambolae in Suriname, which was congruent with human migration records between the two continents. Additionally, three populations of Bactrocera dorsalis were included to better understand the species boundary. The genetic structure between the two species was significantly separated and approximately 11% of total individuals were detected as admixed (0.100 ≤ Q ≤ 0.900). The genetic network showed connections between Bactrocera carambolae and Bactrocera dorsalis groups throughout Depok (DP), JK, and Nakhon Sri Thammarat (NT) populations. These data supported the hypothesis that the reproductive isolation between the two species may be leaky. Although the morphology and monophyly of nuclear and mitochondrial DNA sequences in previous studies showed discrete entities, the hypothesis of semipermeable boundaries may not be rejected. Alleles at microsatellite loci could be introgressed rather than other nuclear and mitochondrial DNA. Bactrocera carambolae may be an incipient rather than a distinct species of Bactrocera dorsalis. Regarding the pest management aspect, the genetic sexing Salaya5 strain (SY5) was included for comparison with wild populations. The SY5 strain was genetically assigned to the Bactrocera carambolae cluster. Likewise, the genetic network showed that the strain shared greatest genetic similarity to JK, suggesting that SY5 did not divert away from its original genetic makeup. Under laboratory conditions, at least 12 generations apart, selection did not strongly affect genetic compatibility between the strain and wild populations. This knowledge further confirms the potential utilization of the Salaya5 strain in regional programs of area-wide integrated pest management using SIT.
    Matched MeSH terms: Reproductive Isolation
  4. Patel RP, Förster DW, Kitchener AC, Rayan MD, Mohamed SW, Werner L, et al.
    R Soc Open Sci, 2016 Oct;3(10):160350.
    PMID: 27853549
    Background. The bay cat Catopuma badia is endemic to Borneo, whereas its sister species the Asian golden cat Catopuma temminckii is distributed from the Himalayas and southern China through Indochina, Peninsular Malaysia and Sumatra. Based on morphological data, up to five subspecies of the Asian golden cat have been recognized, but a taxonomic assessment, including molecular data and morphological characters, is still lacking. Results. We combined molecular data (whole mitochondrial genomes), morphological data (pelage) and species distribution projections (up to the Late Pleistocene) to infer how environmental changes may have influenced the distribution of these sister species over the past 120 000 years. The molecular analysis was based on sequenced mitogenomes of 3 bay cats and 40 Asian golden cats derived mainly from archival samples. Our molecular data suggested a time of split between the two species approximately 3.16 Ma and revealed very low nucleotide diversity within the Asian golden cat population, which supports recent expansion of the population. Discussion. The low nucleotide diversity suggested a population bottleneck in the Asian golden cat, possibly caused by the eruption of the Toba volcano in Northern Sumatra (approx. 74 kya), followed by a continuous population expansion in the Late Pleistocene/Early Holocene. Species distribution projections, the reconstruction of the demographic history, a genetic isolation-by-distance pattern and a gradual variation of pelage pattern support the hypothesis of a post-Toba population expansion of the Asian golden cat from south China/Indochina to Peninsular Malaysia and Sumatra. Our findings reject the current classification of five subspecies for the Asian golden cat, but instead support either a monotypic species or one comprising two subspecies: (i) the Sunda golden cat, distributed south of the Isthmus of Kra: C. t. temminckii and (ii) Indochinese, Indian, Himalayan and Chinese golden cats, occurring north of the Isthmus: C. t. moormensis.
    Matched MeSH terms: Reproductive Isolation
  5. Chan KO, Alexander AM, Grismer LL, Su YC, Grismer JL, Quah ESH, et al.
    Mol Ecol, 2017 Oct;26(20):5435-5450.
    PMID: 28802073 DOI: 10.1111/mec.14296
    Accurately delimiting species boundaries is a nontrivial undertaking that can have significant effects on downstream inferences. We compared the efficacy of commonly used species delimitation methods (SDMs) and a population genomics approach based on genomewide single-nucleotide polymorphisms (SNPs) to assess lineage separation in the Malaysian Torrent Frog Complex currently recognized as a single species (Amolops larutensis). First, we used morphological, mitochondrial DNA and genomewide SNPs to identify putative species boundaries by implementing noncoalescent and coalescent-based SDMs (mPTP, iBPP, BFD*). We then tested the validity of putative boundaries by estimating spatiotemporal gene flow (fastsimcoal2, ABBA-BABA) to assess the extent of genetic isolation among putative species. Our results show that the A. larutensis complex runs the gamut of the speciation continuum from highly divergent, genetically isolated lineages (mean Fst  = 0.9) to differentiating populations involving recent gene flow (mean Fst  = 0.05; Nm  > 5). As expected, SDMs were effective at delimiting divergent lineages in the absence of gene flow but overestimated species in the presence of marked population structure and gene flow. However, using a population genomics approach and the concept of species as separately evolving metapopulation lineages as the only necessary property of a species, we were able to objectively elucidate cryptic species boundaries in the presence of past and present gene flow. This study does not discount the utility of SDMs but highlights the danger of violating model assumptions and the importance of carefully considering methods that appropriately fit the diversification history of a particular system.
    Matched MeSH terms: Reproductive Isolation
  6. Rahman MA, Uehara T, Arshad A, Yusoff FM, Shamsudin MN
    J Zhejiang Univ Sci B, 2012 Oct;13(10):797-810.
    PMID: 23024047
    Two reef margin species of tropical sea urchins, Echinometra sp. C (Ec) and Echinometra oblonga (Eo), occur sympatrically on Okinawa intertidal reefs in southern Japan. Hybridization between these species was examined through a series of cross-fertilization experiments. At limited sperm concentrations, where conspecific crosses reached near 100% fertilization, both heterospecific crosses showed high fertilization rates (81%-85%). The compatibility of the gametes demonstrated that if gamete recognition molecules are involved in fertilization of these species, they are not strongly species-specific. We found that conspecific crosses reached peak fertilization levels much faster than did heterospecific crosses, indicating the presence of a prezygotic barrier to hybridization in the gametes. Larval survival, metamorphosis, and juvenile and adult survival of hybrid groups were nearly identical to those of their parent species. Hybrids from crosses in both directions developed normally through larval stages to sexually mature adults, indicating that neither gametic incompatibility nor hybrid inviability appeared to maintain reproductive isolation between these species. In adults, Ec×Ec crosses gave the highest live weight, followed by Eo (ova)×Ec (sperm), Ec (ova)×Eo (sperm), and Eo×Eo. Other growth performance measures (viz., test size, Aristotle's lantern length, and gonad index) of hybrid groups and their parental siblings showed the same trends. The phenotypic color patterns of the hybrids were closer to the maternal coloration, whereas spine length, tube-foot and gonad spicule characteristics, pedicellaria valve length, and gamete sizes showed intermediate features. Adult F(1) hybrids were completely fertile and displayed high fertilization success in F(1) backcrosses, eliminating the likelihood that hybrid sterility is a postzygotic mechanism of reproductive isolation. Conversely, intensive surveys failed to find hybrid individuals in the field, suggesting the lack or rarity of natural hybridization. This strongly suggests that reproductive isolation is achieved by prezygotic isolating mechanism(s). Of these mechanisms, habitat segregation, gamete competition, differences in spawning times, gametic incompatibility or other genetic and non-genetic factors appear to be important in maintaining the integrity of these species.
    Matched MeSH terms: Reproductive Isolation
  7. Leonardía AA, Tan BC, Kumar PP
    Plant Biol (Stuttg), 2013 Mar;15(2):384-94.
    PMID: 22882300 DOI: 10.1111/j.1438-8677.2012.00640.x
    Mosses and other bryophytes are vital components of forests, because they sustain a tremendous diversity of invertebrates and influence significant ecological functions. There have been few studies on moss population diversity in Southeast Asia, despite the escalating deforestation in this region of rich biodiversity. The genetic diversity of the tropical moss Acanthorrhynchium papillatum (Harv.) Fleisch., collected from forested areas in Singapore and Peninsular Malaysia, was elucidated using eight microsatellite markers developed for this species. Significant levels of allelic and haplotypic diversity were observed among clumps of the moss. Differences in allelic richness and genotypic diversity among the populations were higher in less disturbed forests compared to the more disturbed areas, suggesting that genetic diversity is affected by habitat quality. Genetic diversity levels within the clumps studied were low, indicating that vegetative reproduction was more important within clumps than sexual reproduction. However, multilocus genotypes of samples within the clumps studied were not all alike, providing evidence of microsatellite mutation or of occasional sexuality. Despite the isolation of populations, A. papillatum can introduce genetic variability by mutation among vegetatively propagated individuals. This study provides baseline information on the genetic diversity of A. papillatum tropical rain forests.
    Matched MeSH terms: Reproductive Isolation
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links