Displaying all 8 publications

Abstract:
Sort:
  1. Balakumar P, Anand-Srivastava MB, Jagadeesh G
    Pharmacol Res, 2017 11;125(Pt A):1-3.
    PMID: 28711403 DOI: 10.1016/j.phrs.2017.07.003
    Matched MeSH terms: Renin-Angiotensin System/physiology*
  2. Loh HH, Lim QH, Chai CS, Goh SL, Lim LL, Yee A, et al.
    J Sleep Res, 2023 Feb;32(1):e13726.
    PMID: 36104933 DOI: 10.1111/jsr.13726
    Obstructive sleep apnea is a chronic, sleep-related breathing disorder, which is an independent risk factor for cardiovascular disease. The renin-angiotensin-aldosterone system regulates salt and water homeostasis, blood pressure, and cardiovascular remodelling. Elevated aldosterone levels are associated with excess morbidity and mortality. We aimed to analyse the influence and implications of renin-angiotensin-aldosterone system derangement in individuals with and without obstructive sleep apnea. We pooled data from 20 relevant studies involving 2828 participants (1554 with obstructive sleep apnea, 1274 without obstructive sleep apnea). The study outcomes were the levels of renin-angiotensin-aldosterone system hormones, blood pressure and heart rate. Patients with obstructive sleep apnea had higher levels of plasma renin activity (pooled wmd+ 0.25 [95% confidence interval 0.04-0.46], p = 0.0219), plasma aldosterone (pooled wmd+ 30.79 [95% confidence interval 1.05-60.53], p = 0.0424), angiotensin II (pooled wmd+ 5.19 [95% confidence interval 3.11-7.27], p renin levels) when studies involving patients with resistant hypertension were removed. Sub-group analysis demonstrated that levels of angiotensin II were significantly higher only among the Asian population with obstructive sleep apnea compared with those without obstructive sleep apnea. Body mass index accounted for less than 10% of the between-study variance in elevation of the renin-angiotensin-aldosterone system parameters. Patients with obstructive sleep apnea have higher levels of renin-angiotensin-aldosterone system hormones, blood pressure and heart rate compared with those without obstructive sleep apnea, which remains significant even among patients without resistant hypertension.
    Matched MeSH terms: Renin-Angiotensin System/physiology
  3. Hasan HA, AbuOdeh RO, Muda WAMBW, Mohamed HJBJ, Samsudin AR
    Diabetes Metab Syndr, 2017 Dec;11 Suppl 2:S531-S537.
    PMID: 28392355 DOI: 10.1016/j.dsx.2017.03.047
    AIMS: The aim was to investigate relationships of Vitamin D receptor gene (VDR) polymorphisms to the components of MetS among Arabs adult residing in the United Arab Emirates.

    METHODS: A cross-sectional study of 198 Arabs adult (50 males and 148 females). Serum levels of glucose, vitamin D, HDL-C, and TG, and blood pressure were measured. FokI, BsmI & TaqI genotyping of VDR were investigated using PCR-RFLP technique.

    RESULTS: Age of the participants was 21(9) years with a BMI of 26.8(7.8) kg/m2. About 15% had MetS with serum vitamin D levels of 25.5(18.2) nmol/L. VDR genotyping yielded: FokI: 57.1% FF and 38.9% Ff, BsmI: 29.8% bb and 51.5% Bb, while TaqI showed 39.4% TT and 43.4% Tt. The ff carriers had higher total cholesterol [174(12.4) mg/dl] than FF and Ff genotypes. Bb carriers showed higher BMI and LDL-C than BB and bb genotypes. In females, FokI VDR polymorphism showed significant association with systolic blood pressure (SBP) and F allele carriers were at higher risk of developing high SBP [x2=4.4, df1, OR=0.29 (95%CI: 0.087-0.98), p=0.035].

    CONCLUSION: VDR gene polymorphisms were not associated with MetS, yet it may affect the severity of some of components of MetS, namely the association of BsmI with obesity, FokI and BsmI with dyslipidemia and FokI with SBP.

    Matched MeSH terms: Renin-Angiotensin System/physiology
  4. Rathore HA, Munavvar AS, Abdullah NA, Khan AH, Fathihah B, NurJannah MH, et al.
    Auton Autacoid Pharmacol, 2009 Oct;29(4):171-80.
    PMID: 19740088 DOI: 10.1111/j.1474-8665.2009.00445.x
    1 A raised cardiac workload activates neurohormones which will increase muscle mass and shift contractility to the right along the Frank-Starling curve. 2 This study examined the interaction between the SNS and RAS in contributing to vascular responsiveness following the development of cardiac hypertrophy due to aortic banding. 3 Sprague Dawley rats (180-200 g) were assigned to one of six groups; Normal, Sham-operated, Aortic Banded (AB), Aortic Banded treated with losartan (ABLOS), Aortic Banded treated with 6-hydroxydopamine (ABSYMP) and Aortic banded treated with both losartan and 6-hydroxydopamine (ABSYMPLOS). A constricting band was placed around the supra renal aorta on day zero with drug treatment from day 37 to day 44. Vasopressor responses to noradrenaline, phenylephrine, methoxamine and angiotensin II were measured on day 45. 4 The magnitudes of the MAP responses to all vasoactive agents, expressed as percentage changes, were similar in Normal and Sham groups, but reduced in the AB group. ABLOS group showed attenuated response to ANGII whereas all responses were enhanced in the ABSYM group. 5 A positive interaction between the two systems was observed with alpha(1A)-adrenoceptors identified as a major component of SNS and AT(1) receptors of RAS to induce vasopressor effects.
    Matched MeSH terms: Renin-Angiotensin System/physiology*
  5. Balakumar P, Jagadeesh G
    Cell Signal, 2014 Oct;26(10):2147-60.
    PMID: 25007996 DOI: 10.1016/j.cellsig.2014.06.011
    Ang II, the primary effector pleiotropic hormone of the renin-angiotensin system (RAS) cascade, mediates physiological control of blood pressure and electrolyte balance through its action on vascular tone, aldosterone secretion, renal sodium absorption, water intake, sympathetic activity and vasopressin release. It affects the function of most of the organs far beyond blood pressure control including heart, blood vessels, kidney and brain, thus, causing both beneficial and deleterious effects. However, the protective axis of the RAS composed of ACE2, Ang (1-7), alamandine, and Mas and MargD receptors might oppose some harmful effects of Ang II and might promote beneficial cardiovascular effects. Newly identified RAS family peptides, Ang A and angioprotectin, further extend the complexities in understanding the cardiovascular physiopathology of RAS. Most of the diverse actions of Ang II are mediated by AT1 receptors, which couple to classical Gq/11 protein and activate multiple downstream signals, including PKC, ERK1/2, Raf, tyrosine kinases, receptor tyrosine kinases (EGFR, PDGF, insulin receptor), nuclear factor κB and reactive oxygen species (ROS). Receptor activation via G12/13 stimulates Rho-kinase, which causes vascular contraction and hypertrophy. The AT1 receptor activation also stimulates G protein-independent signaling pathways such as β-arrestin-mediated MAPK activation and Src-JAK/STAT. AT1 receptor-mediated activation of NADPH oxidase releases ROS, resulting in the activation of pro-inflammatory transcription factors and stimulation of small G proteins such as Ras, Rac and RhoA. The components of the RAS and the major Ang II-induced signaling cascades of AT1 receptors are reviewed.
    Matched MeSH terms: Renin-Angiotensin System/physiology*
  6. Mayurasakorn K, Hasanah N, Homma T, Homma M, Rangel IK, Garza AE, et al.
    Metabolism, 2018 Jun;83:92-101.
    PMID: 29410348 DOI: 10.1016/j.metabol.2018.01.012
    BACKGROUND AND PURPOSE: The plasma membrane protein caveolin-1 (CAV-1) has been shown to be involved in modulating glucose homeostasis and the actions of the renin-angiotensin-aldosterone system (RAAS). Caloric restriction (CR) is widely accepted as an effective therapeutic approach to improve insulin sensitivity and reduce the severity of diabetes. Recent data indicate that polymorphisms of the CAV-1 gene are strongly associated with insulin resistance, hypertension and metabolic abnormalities in non-obese individuals. Therefore, we sought to determine whether CR improves the metabolic and cardiovascular (CV) risk factors in the lean CAV-1 KO mice.

    MATERIALS/METHODS: Twelve- to fourteen-week-old CAV-1 knockout (KO) and genetically matched wild-type (WT) male mice were randomized by genotype to one of two dietary regimens: ad libitum (ad lib) food intake or 40% CR for 4 weeks. Three weeks following the onset of dietary restriction, all groups were assessed for insulin sensitivity. At the end of the study, all groups were assessed for fasting glucose, insulin, HOMA-IR, lipids, corticosterone levels and blood pressure (BP). Aldosterone secretion was determined from acutely isolated Zona Glomerulosa cells.

    RESULTS: We confirmed that the CAV-1 KO mice on the ad lib diet display a phenotype consistent with the cardiometabolic syndrome, as shown by higher systolic BP (SBP), plasma glucose, HOMA-IR and aldosterone levels despite lower body weight compared with WT mice on the ad lib diet. CAV-1 KO mice maintained their body weight on the ad lib diet, but had substantially greater weight loss with CR, as compared to caloric restricted WT mice. CR-mediated changes in weight were associated with dramatic improvements in glucose and insulin tolerance in both genotypes. These responses to CR, however, were more robust in CAV-1KO vs. WT mice and were accompanied by reductions in plasma glucose, insulin and HOMA-IR in CAV-1KO but not WT mice. Surprisingly, in the CAV-1 KO, but not in WT mice, CR was associated with increased SBP and aldosterone levels, suggesting that in CAV-1 KO mice CR induced an increase in some CV risk factors.

    CONCLUSIONS: CR improved the metabolic phenotype in CAV-1 KO mice by increasing insulin sensitivity; nevertheless, this intervention also increased CV risk by inappropriate adaptive responses in the RAAS and BP.

    Matched MeSH terms: Renin-Angiotensin System/physiology
  7. Abdulla MH, Sattar MA, Abdullah NA, Khan MA, Anand Swarup KR, Johns EJ
    Auton Autacoid Pharmacol, 2011 Jan-Apr;31(1-2):13-20.
    PMID: 21166975 DOI: 10.1111/j.1474-8673.2010.00461.x
    1 Interaction between renin-angiotensin (RAS) and sympathetic nervous systems (SNS) was investigated by examining the effect of cumulative blockade of angiotensin II (Ang II) and adrenergic receptors in normal Sprague Dawley rats. 2 Rats were treated with losartan (10 mg/kg), carvedilol (5 mg/kg), or losartan plus carvedilol (10+5 mg/kg) orally for 7 days. On day 8, the animals were anaesthetized with pentobarbitone and prepared for systemic haemodynamic study. Dose-response relationships for the elevation of mean arterial pressure or change in heart rate (HR) in response to intravenous injections of noradrenaline (NA), phenylephrine (PE), methoxamine (ME) and Ang II were determined. 3 Losartan or the combination of losartan with carvedilol blunted vasopressor responses to ME and Ang II. Dose-response relationships for agonist action on HR were significantly inhibited by all treatments except for the combination of losartan and carvedilol on the decrease in HR induced by PE. Carvedilol decreased vasopressor responses to NA, PE and Ang II, and HR responses to NA, ME and Ang II. Combination treatment produced similar effects to losartan on the vasopressor and HR responses but had a greater effect on vasopressor responses to ME and Ang II, and on HR responses to NA and Ang II than carvedilol alone. 4 It is concluded that peripheral vasoconstriction induced by Ang II is partly mediated by adrenergic action and that the vasopressor responses to adrenergic agonists depend on an intact RAS. These observations suggest an interactive relationship between RAS and SNS in determining systemic haemodynamic responses in 'normal' rats.
    Matched MeSH terms: Renin-Angiotensin System/physiology
  8. Abdulla MH, Sattar MA, Abdullah NA, Hazim AI, Anand Swarup KR, Rathore HA, et al.
    Auton Autacoid Pharmacol, 2008 Oct;28(4):95-101.
    PMID: 18778332 DOI: 10.1111/j.1474-8673.2008.00422.x
    1. This study was undertaken to elucidate the effects of inhibiting the renin-angiotensin system (RAS) with losartan, and acute unilateral renal denervation on renal haemodynamic responses to intrarenal administration of vasoconstrictor doses of dopamine and vasodilator doses of isoprenaline in Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). 2. Acute unilateral renal denervation of the left kidney in rats was confirmed by a drop in the renal vasoconstrictor response to renal nerve stimulation (P < 0.05) along with diuresis and natriuresis. Rats were pretreated with losartan for 7 days and thereafter animals fasted overnight were anaesthetized (sodium pentobarbitone, 60 mg/kg i.p.) and acute renal haemodynamic responses studied. 3. Dose-response curves were constructed for dopamine and isoprenaline that induced falls or increases in renal blood flow, respectively. It was observed that renal vascular responses were greater in the denervated as compared with rats with intact renal nerves (all P < 0.05). Dopamine-induced renal vasoconstrictor responses were markedly lower in losartan-treated denervated WKY and SHR compared with their untreated counterparts (all P < 0.05). It was also observed that in losartan-treated and denervated WKY rats the vasodilatory responses to isoprenaline were markedly lower compared with untreated rats (all P < 0.05). However, in SHR, under the same conditions, there was no difference in the renal response to isoprenaline whether or not rats were treated with losartan (P > 0.05). 4. The data obtained showed that the renal vasoconstrictor effect of dopamine depends on intact renal nerves and RAS in WKY and SHR. Isoprenaline responses were likewise sensitive to renal denervation and RAS inhibition in WKY rats but not SHRs. Our observations reveal a possible relationship between renal AT(1) receptors and alpha(1)-adrenoceptors in WKY and SHR. There is also evidence to suggest an interaction between renal beta-adrenoceptors and AT(1) receptors in WKY rats.
    Matched MeSH terms: Renin-Angiotensin System/physiology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links