Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Shariff KA, Tsuru K, Ishikawa K
    Mater Sci Eng C Mater Biol Appl, 2017 Jun 01;75:1411-1419.
    PMID: 28415432 DOI: 10.1016/j.msec.2017.03.004
    β-Tricalcium phosphate (β-TCP) has attracted much attention as an artificial bone substitute owing to its biocompatibility and osteoconductivity. In this study, osteoconductivity of β-TCP bone substitute was enhanced without using growth factors or cells. Dicalcium phosphate dihydrate (DCPD), which is known to possess the highest solubility among calcium phosphates, was coated on β-TCP granules by exposing their surface with acidic calcium phosphate solution. The amount of coated DCPD was regulated by changing the reaction time between β-TCP granules and acidic calcium phosphate solution. Histomorphometry analysis obtained from histological results revealed that the approximately 10mol% DCPD-coated β-TCP granules showed the largest new bone formation compared to DCPD-free β-TCP granules, approximately 2.5mol% DCPD-coated β-TCP granules, or approximately 27mol% DCPD-coated β-TCP granules after 2 and 4weeks of implantation. Based on this finding, we demonstrate that the osteoconductivity of β-TCP granules could be improved by coating their surface with an appropriate amount of DCPD.
    Matched MeSH terms: Bone Regeneration/drug effects*
  2. Kouhi M, Jayarama Reddy V, Fathi M, Shamanian M, Valipouri A, Ramakrishna S
    J Biomed Mater Res A, 2019 06;107(6):1154-1165.
    PMID: 30636094 DOI: 10.1002/jbm.a.36607
    Guided bone regeneration (GBR) has been established to be an effective method for the repair of defective tissues, which is based on isolating bone defects with a barrier membrane for faster tissue reconstruction. The aim of the present study is to develop poly (hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/fibrinogen (FG)/bredigite (BR) membranes with applicability in GBR. BR nanoparticles were synthesized through a sol-gel method and characterized using transmission electron microscopy and X-ray diffractometer. PHBV, PHBV/FG, and PHBV/FG/BR membranes were fabricated using electrospinning and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle, pore size, thermogravimetric analysis and tensile strength. The electrospun PHBV, PHBV/FG, and PHBV/FG/BR nanofibers were successfully obtained with the mean diameter ranging 240-410 nm. The results showed that Young's modulus and ultimate strength of the PHBV membrane reduced upon blending with FG and increased by further incorporation of BR nanoparticles, Moreover hydrophilicity of the PHBV membrane improved on addition of FG and BR. The in vitro degradation assay demonstrated that incorporation of FG and BR into PHBV matrix increased its hydrolytic degradation. Cell-membrane interactions were studied by culturing human fetal osteoblast cells on the fabricated membrane. According to the obtained results, osteoblasts seeded on PHBV/FG/BR displayed higher cell adhesion and proliferation compared to PHBV and PHBV/FG membrane. Furthermore, alkaline phosphatase activity and alizarin red-s staining indicated enhanced osteogenic differentiation and mineralization of cells on PHBV/FG/BR membranes. The results demonstrated that developed electrospun PHBV/FG/BR nanofibrous mats have desired potential as a barrier membrane for guided bone tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1154-1165, 2019.
    Matched MeSH terms: Bone Regeneration/drug effects*
  3. Mohajer S, Mat Taha R, Mohajer M, Khorasani Esmaeili A
    ScientificWorldJournal, 2014;2014:680356.
    PMID: 25045740 DOI: 10.1155/2014/680356
    To explore the potential of in vitro rapid regeneration, three varieties (Golpaygan-181, Orumieh-1763, and Gorgan-1601) of sainfoin (Onobrychis viciifolia Scop. syn. Onobrychis sativa L.) were evaluated. For the first time, an encapsulation protocol was established from somatic embryogenic callus in torpedo and cotyledonary stages to create artificial seeds. Callus derived from different concentrations of Kinetin (0-2.0 mg L(-1)) and Indole-3-acetic acid (0-2.0 mg L(-1)) was coated with sodium alginate and subsequently cultured either in Murashige and Skoog (MS) medium or in soil substrate. Adventitious shoots from synthetic beads developed into rooting in full and half strength MS medium supplemented with various concentrations of auxin and cytokinin. Prolonged water conservation of black and red soils (1:1) had the highest rate of survival plantlets in the acclimatization process. Diverse resistance techniques in Onobrychis viciifolia were evaluated when the plants were subjected to water deficiency. Higher frequency of epicuticular waxes was observed in in vivo leaves compared to in vitro leaves. Jagged trichomes nonsecreting glands covered by spines were only observed in the lower leaf side. Ultimately, stomata indices were 0.127 (abaxial), 0.188 (adaxial) in in vivo and 0.121 (abaxial), 0.201 (adaxial) in in vitro leaves.
    Matched MeSH terms: Regeneration/drug effects
  4. Rozali SE, Rashid KA, Taha RM
    ScientificWorldJournal, 2014;2014:457092.
    PMID: 25136669 DOI: 10.1155/2014/457092
    A successful protocol was established for micropropagation in two selected varieties of exotic ornamental plants, Calathea crotalifera. The effects of different sterilization techniques, explant type, and the combination and concentration of plant growth regulators on shoots induction were studied. The axillary shoot buds explants sprouted from rhizomes in soil free conditions showed high induction rate of shoots with lowest contamination percentage when treated with combination of 30% (v/v) NaOCl, 70% (v/v) ethanol, and 0.3% (w/v) HgCl2. In the present study, the highest number of multiple shoots was obtained in MS basal medium supplemented with 3.5 mg/L 6-Benzylaminopurine (BAP), 1.0 mg/L 1-Naphthaleneacetic acid (NAA), 3% sucrose, and 6 g/L plant agar for both varieties and was used as multiplication medium. Microshoots were highly induced when the young shoot bud explants were incised longitudinally prior subculture. Chlorophyll analysis was studied to test the effects of activated charcoal and L-glutamine on reduction of necrosis problem. The maximum roots induction was recorded on MS medium supplemented with 1.0 mg/L 1-Naphthaleneacetic acid (NAA) compared to indolebutyric acid (IBA). The complete regenerated plantlets were successfully acclimatized in the soilless medium under greenhouse condition. This is the first report of rapid mass propagation for C. crotalifera.
    Matched MeSH terms: Regeneration/drug effects*
  5. Babaei N, Abdullah NA, Saleh G, Abdullah TL
    ScientificWorldJournal, 2014;2014:275028.
    PMID: 24723799 DOI: 10.1155/2014/275028
    A procedure was developed for in vitro propagation of Curculigo latifolia through shoot tip culture. Direct regeneration and indirect scalp induction of Curculigo latifolia were obtained from shoot tip grown on MS medium supplemented with different concentrations and combinations of thidiazuron and indole-3-butyric acid. Maximum response for direct regeneration in terms of percentage of explants producing shoot, shoot number, and shoot length was obtained on MS medium supplemented with combination of thidiazuron (0.5 mg L(-1)) and indole-3-butyric acid (0.25 mg L(-1)) after both 10 and 14 weeks of cultures. Indole-3-butyric acid in combination with thidiazuron exhibited a synergistic effect on shoot regeneration. The shoot tips were able to induce maximum scalp from basal end of explants on the medium with 2 mg L(-1) thidiazuron. Cultures showed that shoot number, shoot length, and scalp size increased significantly after 14 weeks of culture. Transferring of the shoots onto the MS medium devoid of growth regulators resulted in the highest percentage of root induction and longer roots, while medium supplemented with 0.25 mg L(-1) IBA produced more numbers of roots.
    Matched MeSH terms: Regeneration/drug effects
  6. Mahmad N, Taha RM, Othman R, Saleh A, Hasbullah NA, Elias H
    ScientificWorldJournal, 2014;2014:745148.
    PMID: 24895660 DOI: 10.1155/2014/745148
    In vitro direct regeneration of Nelumbo nucifera Gaertn. was successfully achieved from immature explants (yellow plumule) cultured on a solid MS media supplemented with combinations of 0.5 mg/L BAP and 1.5 mg/L NAA which resulted in 16.00 ± 0.30 number of shoots per explant and exhibited a new characteristic of layered multiple shoots, while normal roots formed on the solid MS basal media. The double-layered media gave the highest number of shoots per explant with a ratio of 2 : 1 (liquid to solid) with a mean number of 16.67 ± 0.23 shoots per explant with the formation of primary and secondary roots from immature explants. In the study involving light distance, the tallest shoot (16.67 ± 0.23 mm) obtained from the immature explants was at a light distance of 200 mm from the source of inflorescent light (1000 lux). The plantlets were successfully acclimatized in clay loam soil after 8 months being maintained under in vitro conditions.
    Matched MeSH terms: Regeneration/drug effects
  7. Ginebra MP, Aparicio C, Engel E, Navarro M, Javier Gil F, Planell JA
    Med J Malaysia, 2004 May;59 Suppl B:65-6.
    PMID: 15468821
    Matched MeSH terms: Bone Regeneration/drug effects*
  8. Selvakumar M, Srivastava P, Pawar HS, Francis NK, Das B, Sathishkumar G, et al.
    ACS Appl Mater Interfaces, 2016 Feb 17;8(6):4086-100.
    PMID: 26799576 DOI: 10.1021/acsami.5b11723
    Guided bone regeneration (GBR) scaffolds are futile in many clinical applications due to infection problems. In this work, we fabricated GBR with an anti-infective scaffold by ornamenting 2D single crystalline bismuth-doped nanohydroxyapatite (Bi-nHA) rods onto segmented polyurethane (SPU). Bi-nHA with high aspect ratio was prepared without any templates. Subsequently, it was introduced into an unprecedented synthesized SPU matrix based on dual soft segments (PCL-b-PDMS) of poly(ε-caprolactone) (PCL) and poly(dimethylsiloxane) (PDMS), by an in situ technique followed by electrospinning to fabricate scaffolds. For comparison, undoped pristine nHA rods were also ornamented into it. The enzymatic ring-opening polymerization technique was adapted to synthesize soft segments of PCL-b-PDMS copolymers of SPU. Structure elucidation of the synthesized polymers is done by nuclear magnetic resonance spectroscopy. Sparingly, Bi-nHA ornamented scaffolds exhibit tremendous improvement (155%) in the mechanical properties with excellent antimicrobial activity against various human pathogens. After confirmation of high osteoconductivity, improved biodegradation, and excellent biocompatibility against osteoblast cells (in vitro), the scaffolds were implanted in rabbits by subcutaneous and intraosseous (tibial) sites. Various histological sections reveal the signatures of early cartilage formation, endochondral ossification, and rapid bone healing at 4 weeks of the critical defects filled with ornamented scaffold compared to SPU scaffold. This implies osteogenic potential and ability to provide an adequate biomimetic microenvironment for mineralization for GBR of the scaffolds. Organ toxicity studies further confirm that no tissue architecture abnormalities were observed in hepatic, cardiac, and renal tissue sections. This finding manifests the feasibility of fabricating a mechanically adequate nanofibrous SPU scaffold by a biomimetic strategy and the advantages of Bi-nHA ornamentation in promoting osteoblast phenotype progression with microbial protection (on-demand) for GBR applications.
    Matched MeSH terms: Bone Regeneration/drug effects*
  9. Gorain B, Choudhury H, Pandey M, Kesharwani P, Abeer MM, Tekade RK, et al.
    Biomed Pharmacother, 2018 Aug;104:496-508.
    PMID: 29800914 DOI: 10.1016/j.biopha.2018.05.066
    Myocardial infarction (cardiac tissue death) is among the most prevalent causes of death among the cardiac patients due to the inability of self-repair in cardiac tissues. Myocardial tissue engineering is regarded as one of the most realistic strategies for repairing damaged cardiac tissue. However, hindrance in transduction of electric signals across the cardiomyocytes due to insulating properties of polymeric materials worsens the clinical viability of myocardial tissue engineering. Aligned and conductive scaffolds based on Carbon nanotubes (CNT) have gained remarkable recognition due to their exceptional attributes which provide synthetic but viable microenvironment for regeneration of engineered cardiomyocytes. This review presents an overview and critical analysis of pharmaceutical implications and therapeutic feasibility of CNT based scaffolds in improving the cardiac tissue regeneration and functionality. The expository analysis of the available evidence revealed that inclusion of single- or multi-walled CNT into fibrous, polymeric, and elastomeric scaffolds results in significant improvement in electrical stimulation and signal transduction through cardiomyocytes. Moreover, incorporation of CNT in engineering scaffolds showed a greater potential of augmenting cardiomyocyte proliferation, differentiation, and maturation and has improved synchronous beating of cardiomyocytes. Despite promising ability of CNT in promoting functionality of cardiomyocytes, their presence in scaffolds resulted in substantial improvement in mechanical properties and structural integrity. Conclusively, this review provides new insight into the remarkable potential of CNT aligned scaffolds in improving the functionality of engineered cardiac tissue and signifies their feasibility in cardiac tissue regenerative medicines and stem cell therapy.
    Matched MeSH terms: Regeneration/drug effects*
  10. Gunawardena TNA, Rahman MT, Abdullah BJJ, Abu Kasim NH
    J Tissue Eng Regen Med, 2019 04;13(4):569-586.
    PMID: 30644175 DOI: 10.1002/term.2806
    Recent studies suggest that the main driving force behind the therapeutic activity observed in mesenchymal stem cells (MSCs) are the paracrine factors secreted by these cells. These biomolecules also trigger antiapoptotic events to prevent further degeneration of the diseased organ through paracrine signalling mechanisms. In comparison with the normal physiological conditions, an increased paracrine gradient is observed within the peripheral system of diseased organs that enhances the migration of tissue-specific MSCs towards the site of infection or injury to promote healing. Thus, upon administration of conditioned media derived from mesenchymal stem cell cultures (MSC-CM) could contribute in maintaining the increased paracrine factor gradient between the diseased organ and the stem cell niche in order to speed up the process of recovery. Based on the principle of the paracrine signalling mechanism, MSC-CM, also referred as the secretome of the MSCs, is a rich source of the paracrine factors and are being studied extensively for a wide range of regenerative therapies such as myocardial infarction, stroke, bone regeneration, hair growth, and wound healing. This article highlights the current technological applications and advances of MSC-CM with the aim to appraise its future potential as a regenerative therapeutic agent.
    Matched MeSH terms: Regeneration/drug effects
  11. Ngah NA, Ratnayake J, Cooper PR, Dias GJ, Tong DC, Mohd Noor SNF, et al.
    Molecules, 2021 Jan 20;26(3).
    PMID: 33498167 DOI: 10.3390/molecules26030517
    OBJECTIVE: The use of platelet concentrates (PCs) in oral and maxillofacial surgery, periodontology, and craniofacial surgery has been reported. While PCs provide a rich reservoir of autologous bioactive growth factors for tissue regeneration, their drawbacks include lack of utility for long-term application, low elastic modulus and strength, and limited storage capability. These issues restrict their broader application. This review focuses on the lyophilization of PCs (LPCs) and how this processing approach affects their biological and mechanical properties for application as a bioactive scaffold for craniofacial tissue regeneration.

    MATERIALS AND METHODS: A comprehensive search of five electronic databases, including Medline, PubMed, EMBASE, Web of Science, and Scopus, was conducted from 1946 until 2019 using a combination of search terms relating to this topic.

    RESULTS: Ten manuscripts were identified as being relevant. The use of LPCs was mostly studied in in vitro and in vivo craniofacial bone regeneration models. Notably, one clinical study reported the utility of LPCs for guided bone regeneration prior to dental implant placement.

    CONCLUSIONS: Lyophilization can enhance the inherent characteristics of PCs and extends shelf-life, enable their use in emergency surgery, and improve storage and transportation capabilities. In light of this, further preclinical studies and clinical trials are required, as LPCs offer a potential approach for clinical application in craniofacial tissue regeneration.

    Matched MeSH terms: Bone Regeneration/drug effects*
  12. Pinnagoda K, Larsson HM, Vythilingam G, Vardar E, Engelhardt EM, Thambidorai RC, et al.
    Acta Biomater, 2016 10 01;43:208-217.
    PMID: 27450527 DOI: 10.1016/j.actbio.2016.07.033
    The treatment of congenital malformations or injuries of the urethra using existing autologous tissues can be associated with post-operative complications. Using rat-tail collagen, we have engineered an acellular high-density collagen tube. These tubes were made of 2 layers and they could sustain greater burst pressures than the monolayered tubes. Although it remains a weak material this 2 layered tube could be sutured to the native urethra. In 20 male New Zealand white rabbits, 2cm long grafts were sutured in place after subtotal excision of the urethra. This long-term study was performed in Lausanne (Switzerland) and in Kuala Lumpur (Malaysia). No catheter was placed post-operatively. All rabbits survived the surgical implantation. The animals were evaluated at 1, 3, 6, and 9months by contrast voiding cysto-urethrography, histological examination and immunohistochemistry. Spontaneous re-population of urothelial and smooth muscle cells on all grafts was demonstrated. Cellular organization increased with time, however, 20% of both fistula and stenosis could be observed post-operatively. This off-the shelf scaffold with a promising urethral regeneration has a potential for clinical application.

    STATEMENT OF SIGNIFICANCE: In this study we have tissue engineered a novel cell free tubular collagen based scaffold and used it as a urethral graft in a rabbit model. The novelty of our technique is that the tube can be sutured. Testing showed better burst pressures and the grafts could then be successfully implanted after a urethral excision. This long term study demonstrated excellent biocompatibility of the 2cm graft and gradual regeneration with time, challenging the current literature. Finally, the main impact is that we describe an off-the-shelf and cost-effective product with comparable surgical outcome to the cellular grafts.

    Matched MeSH terms: Regeneration/drug effects*
  13. Dong J, Tao L, Abourehab MAS, Hussain Z
    Int J Biol Macromol, 2018 Sep;116:1268-1281.
    PMID: 29782984 DOI: 10.1016/j.ijbiomac.2018.05.116
    Osteoporosis is a medical condition of fragile bones with an increased susceptibility to fracture. Despite having availability of a wide range of pharmacological agents, prevalence of osteoporosis is continuously escalating. Owing to excellent biomedical achievements of nanomedicines in the last few decades, we aimed combo-delivery of bone anti-resorptive agent, alendronate (ALN), and bone density enhancing drug, curcumin (CUR) in the form of polymeric nanoparticles. To further optimize the therapeutic efficacy, the prepared ALN/CUR nanoparticles (NPs) were decorated with hyaluronic acid (HA) which is a well-documented biomacromolecule having exceptional bone regenerating potential. The optimized nanoformulation was then evaluated for bone regeneration efficacy by assessing time-mannered modulation in the proliferation, differentiation, and mineralization of MC3T3-E1 cells, a pre-osteoblastic model. Moreover, the time-mannered expression of various bone-forming protein biomarkers such as bone morphogenetic protein, runt related transcription factor 2, and osteocalcin were assessed in the cell lysates. Results revealed that HA-ALN/CUR NPs provoke remarkable increase in the proliferation, differentiation, and mineralization in the ECM of MC3T3-E1 cells which ultimately leads to enhanced bone formation. This new strategy of employing simultaneous delivery of anti-resorptive and bone forming agents would open new horizons for scientists as an efficient alternative pharmacotherapy for the management of osteoporosis.
    Matched MeSH terms: Bone Regeneration/drug effects*
  14. Ping KS, Poobathy RR, Zakaria R, Subramaniam S
    Cryo Letters, 2018 5 8;38(4):290-298.
    PMID: 29734430
      BACKGROUND: Conservation of commercially important ornamental plants is important to maintain its unique beauty to cater the market demands.

    OBJECTIVE: The main objective is to develop an efficient cryopreservation technique for Aranda Broga Blue orchid PLBs using droplet-vitrification method.

    MATERIALS AND METHODS: Several critical factors in cryopreservation were accessed such as preculture concentrations and durations, choice of vitrification solutions, two-step or three-step vitrification, growth recovery medium and PVS2 exposure duration.

    RESULTS: The best growth regeneration percentage (5%) was obtained when 3-4mm PLBs were precultured in 0.2M sucrose for 3 days, followed by osmoprotection for 20 minutes, dehydration in PVS2 for 20 minutes at 0 degree C, LN storage, thawed and unloading for 20 minutes, and growth regeneration in VW10 medium. PLBs were found to be very sensitive to osmotic stress imposed by high molecular weight cryoprotectant such as sucrose and glycerol. Osmotic potential of growth recovery medium is one of the main factors that affect growth recovery in cryopreserved PLBs.

    CONCLUSION: Current report showed possibilities in cryopreserving Aranda Broga Blue PLBs using droplet-vitrification technique. However, further improvement of growth recovery can be done by focussing on approaches that facilitate sufficient water removal from PLBs without causing severe osmotic injuries to the plant cells.

    Matched MeSH terms: Regeneration/drug effects
  15. Gorain B, Tekade M, Kesharwani P, Iyer AK, Kalia K, Tekade RK
    Drug Discov Today, 2017 04;22(4):652-664.
    PMID: 28219742 DOI: 10.1016/j.drudis.2016.12.007
    To avoid tissue rejection during organ transplantation, research has focused on the use of tissue engineering to regenerate required tissues or organs for patients. The biomedical applications of hyperbranched, multivalent, structurally uniform, biocompatible dendrimers in tissue engineering include the mimicking of natural extracellular matrices (ECMs) in the 3D microenvironment. Dendrimers are unimolecular architects that can incorporate a variety of biological and/or chemical substances in a 3D architecture to actively support the scaffold microenvironment during cell growth. Here, we review the use of dendritic delivery systems in tissue engineering. We discuss the available literature, highlighting the 3D architecture and preparation of these nanoscaffolds, and also review challenges to, and advances in, the use dendrimers in tissue engineering. Advances in the manufacturing of dendritic nanoparticles and scaffold architectures have resulted in the successful incorporation of dendritic scaffolds in tissue engineering.
    Matched MeSH terms: Regeneration/drug effects
  16. Nour S, Imani R, Chaudhry GR, Sharifi AM
    J Biomed Mater Res A, 2021 04;109(4):453-478.
    PMID: 32985051 DOI: 10.1002/jbm.a.37105
    Skin injuries and in particular, chronic wounds, are one of the major prevalent medical problems, worldwide. Due to the pivotal role of angiogenesis in tissue regeneration, impaired angiogenesis can cause several complications during the wound healing process and skin regeneration. Therefore, induction or promotion of angiogenesis can be considered as a promising approach to accelerate wound healing. This article presents a comprehensive overview of current and emerging angiogenesis induction methods applied in several studies for skin regeneration, which are classified into the cell, growth factor, scaffold, and biological/chemical compound-based strategies. In addition, the advantages and disadvantages of these angiogenic strategies along with related research examples are discussed in order to demonstrate their potential in the treatment of wounds.
    Matched MeSH terms: Regeneration/drug effects
  17. Yow YY, Goh TK, Nyiew KY, Lim LW, Phang SM, Lim SH, et al.
    Cells, 2021 08 25;10(9).
    PMID: 34571842 DOI: 10.3390/cells10092194
    Despite the progressive advances, current standards of treatments for peripheral nerve injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should be considered. Complementary and alternative medicines (CAMs) are widely explored for their therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated. The present systematic review, designed according to guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions, and their respective natural products. The available literature on CAMs associated with peripheral nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science. According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied. Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in the management of peripheral nerve injury.
    Matched MeSH terms: Nerve Regeneration/drug effects*
  18. Ajlia SA, Majid FA, Suvik A, Effendy MA, Nouri HS
    Pak J Biol Sci, 2010 Jun 15;13(12):596-603.
    PMID: 21061910
    A new invention, papain-based wound cleanser is formulated by incorporating papain, a proteolytic enzyme extracted from Carica papaya into the formulation. This cleanser is invented to simplify the methods in wound management by combining wound cleansing and wound debridement using a single formulation. This study describes the preparation and preclinical study of papain-based wound cleanser in accelerating wound healing. In this study, papain-based wound cleanser was used to treat wound incision on Sprague-Dawley rats while distilled water and Betadine were used as negative and positive control. Twenty-seven clinically healthy white rats were randomly divided into three groups and treated accordingly until the 21st day post-incision. Wound reduction rates and histological analysis were obtained to asses the healing pattern. Rats treated with papain-based wound cleanser showed a progressive wound healing based on the wound reduction rates and histological analysis when compared with rats treated with distilled water and Betadine. Better collagen deposition and presence of skin organelles in rats treated with papain-based wound cleanser demonstrated its efficacy in promoting wound healing. In addition to its wound healing effect, papain-based wound cleanser is also integrated with antibacterial properties which make it a complete package for wound management. However, further studies should be carried out to ensure its safety for human usage.
    Matched MeSH terms: Regeneration/drug effects*
  19. Daud N, Taha RM, Noor NN, Alimon H
    Pak J Biol Sci, 2011 May 01;14(9):546-51.
    PMID: 22032084
    Nowadays, many researches were conducted in minimizing tissue culture technology due to the overhead of cost needed. The purpose of this study was to investigate the effects of using five kinds of organic additives at four level concentrations responsive to the number of shoots produced for eight weeks in culture. Stem segment explants of Celosia sp. were cultured on MS medium that have been supplemented with different kinds of extract juice that serve as organic additives which are mature coconut, young coconut, papaya, banana and tomato at 20, 30, 50 and 70 ml L-1. The numbers of shoot on each explant were recorded and the mean of ten replicates explants were calculated. Among the media used, young coconut water at 70 ml L1- induced the highest shoot regeneration (14.21+/-8.26), followed by mature coconut water at 50 ml L-1 (13.14+/-10.33). Banana and tomato juice promote highest shoot regeneration of stem segments at 50 ml L-1 that produced 9.57+/-4.68 and 9.28+/-5.82 shoots per explants, respectively. While the lowest concentration which at 20 ml L-1 of papaya juice showed highest shoot regeneration (10.50+/-3.45) produced among the three other concentration tested. Statistical results showed that there were significant differences interactions effects (p<0.05) in terms of number of shoot regenerated between the types of extracts juices determined by ANOVA test. Comparing number of shoots regenerated that were cultured in control media, it showed higher than all of experimental medium composition. There were no big different in cost required in preparation of control media and the experimental media. Applications of five kinds of local fruit in tissue culture media should be considered since it responsive in shoot regeneration.
    Matched MeSH terms: Regeneration/drug effects*
  20. Shi X, Xu L, Le TB, Zhou G, Zheng C, Tsuru K, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Feb;59:542-548.
    PMID: 26652406 DOI: 10.1016/j.msec.2015.10.024
    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O3) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O3 treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100°C since higher temperatures would impair the hardness of TiN coating. By contrast, O3 treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O3 treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant.
    Matched MeSH terms: Bone Regeneration/drug effects*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links