Displaying all 3 publications

Abstract:
Sort:
  1. Haque N, Rahman MT, Abu Kasim NH, Alabsi AM
    ScientificWorldJournal, 2013;2013:632972.
    PMID: 24068884 DOI: 10.1155/2013/632972
    Cell-based regenerative therapies, based on in vitro propagation of stem cells, offer tremendous hope to many individuals suffering from degenerative diseases that were previously deemed untreatable. Due to the self-renewal capacity, multilineage potential, and immunosuppressive property, mesenchymal stem cells (MSCs) are considered as an attractive source of stem cells for regenerative therapies. However, poor growth kinetics, early senescence, and genetic instability during in vitro expansion and poor engraftment after transplantation are considered to be among the major disadvantages of MSC-based regenerative therapies. A number of complex inter- and intracellular interactive signaling systems control growth, multiplication, and differentiation of MSCs in their niche. Common laboratory conditions for stem cell culture involve ambient O₂ concentration (20%) in contrast to their niche where they usually reside in 2-9% O₂. Notably, O₂ plays an important role in maintaining stem cell fate in terms of proliferation and differentiation, by regulating hypoxia-inducible factor-1 (HIF-1) mediated expression of different genes. This paper aims to describe and compare the role of normoxia (20% O₂) and hypoxia (2-9% O₂) on the biology of MSCs. Finally it is concluded that a hypoxic environment can greatly improve growth kinetics, genetic stability, and expression of chemokine receptors during in vitro expansion and eventually can increase efficiency of MSC-based regenerative therapies.
    Matched MeSH terms: Receptors, Chemokine/metabolism
  2. Perumalsamy S, Aqilah Mohd Zin NA, Widodo RT, Wan Ahmad WA, Vethakkan SRDB, Huri HZ
    Curr Pharm Des, 2017;23(25):3689-3698.
    PMID: 28625137 DOI: 10.2174/1381612823666170616081256
    BACKGROUND: Chemerin is an adipokine that induces insulin resistance by the mechanism of inflammation in adipose tissue but these are still unclear. A high level of chemerin in humans is considered as a marker of inflammation in insulin resistance and obesity as well as in type 2 diabetes mellitus. Despite the role of chemerin in insulin resistance progression, chemerin as one of the novel adipokines is proposed to be involved in high cancer risk and mortality.

    AIM: The aim of this paper was to review the role of CMKLR-1 receptor and the potential therapeutic target in the management of chemerin induced type 2 diabetes mellitus and cancer.

    PATHOPHYSIOLOGY: Increased chemerin secretion activates an inflammatory response. The inflammatory response will increase the oxidative stress in adipose tissue and consequently results in an insulin-resistant state. The occurrence of inflammation, oxidative stress and insulin resistance leads to the progression of cancers.

    CONCLUSION: Chemerin is one of the markers that may involve in development of both cancer and insulin resistance. Chemokine like receptor- 1 (CMKLR-1) receptor that regulates chemerin levels exhibits a potential therapeutic target for insulin resistance, type 2 diabetes and cancer treatment.

    Matched MeSH terms: Receptors, Chemokine/metabolism*
  3. Yong YK, Shankar EM, Westhorpe CL, Maisa A, Spelman T, Kamarulzaman A, et al.
    Medicine (Baltimore), 2016 Aug;95(31):e4477.
    PMID: 27495090 DOI: 10.1097/MD.0000000000004477
    HIV-infected individuals on antiretroviral therapy (ART) are at increased risk of cardiovascular disease (CVD). Given the relationship between innate immune activation and CVD, we investigated the association of single-nucleotide polymorphisms (SNPs) in TLR4 and CD14 and carotid intima-media thickness (cIMT), a surrogate measurement for CVD, in HIV-infected individuals on ART and HIV-uninfected controls as a cross-sectional, case-control study. We quantified the frequency of monocyte subsets (CD14, CD16), markers of monocyte activation (CD38, HLA-DR), and endothelial adhesion (CCR2, CX3CR1, CD11b) by flow cytometry. Plasma levels of lipopolysaccharide, sCD163, sCD14, sCX3CL1, and sCCL2, were measured by ELISA. Genotyping of TLR4 and CD14 SNPs was also performed. The TT genotype for CD14/-260SNP but not the CC/CT genotype was associated with elevated plasma sCD14, and increased frequency of CD11b+CD14+ monocytes in HIV-infected individuals. The TT genotype was associated with lower cIMT in HIV-infected patients (n = 47) but not in HIV-uninfected controls (n = 37). The AG genotype for TLR4/+896 was associated with increased CX3CR1 expression on total monocytes among HIV-infected individuals and increased sCCL2 and fibrinogen levels in HIV-uninfected controls. SNPs in CD14/-260 and TLR4/+896 were significantly associated with different markers of systemic and monocyte activation and cIMT that differed between HIV-infected participants on ART and HIV-uninfected controls. Further investigation on the relationship of these SNPs with a clinical endpoint of CVD is warranted in HIV-infected patients on ART.
    Matched MeSH terms: Receptors, Chemokine/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links