Displaying all 2 publications

Abstract:
Sort:
  1. Ahmad A, Sattar MA, Azam M, Abdulla MH, Khan SA, Hashmi F, et al.
    PLoS One, 2016;11(5):e0154995.
    PMID: 27191852 DOI: 10.1371/journal.pone.0154995
    The purpose of the present study was to investigate the interaction between H2S and NO (nitric oxide) in the kidney and to evaluate its impact on the functional contribution of α1A and α1B-adrenoreceptors subtypes mediating the renal vasoconstriction in the kidney of rats with left ventricular hypertrophy (LVH). In rats the LVH induction was by isoprenaline administration and caffeine in the drinking water together with intraperitoneal administration of H2S. The responsiveness of α1A and α1B to exogenous noradrenaline, phenylephrine and methoxaminein the absence and presence of 5-methylurapidil (5-MeU) and chloroethylclonidine (CEC) was studied. Cystathione gamma lyase (CSE), cystathione β synthase (CBS), 3-mercaptopyruvate sulphar transferase (3-MST) and endothelial nitric oxide synthase (eNOS) were quantified. There was significant up regulation of CSE and eNOS in the LVH-H2S compared to the LVH group (P<0.05). Baseline renal cortical blood perfusion (RCBP) was increased (P<0.05) in the LVH-H2S compared to the LVH group. The responsiveness of α1A-adrenergic receptors to adrenergic agonists was increased (P<0.05) after administration of low dose 5-Methylurapidil in the LVH-H2S group while α1B-adrenergic receptors responsiveness to adrenergic agonists were increased (P<0.05) by both low and high dose chloroethylclonidine in the LVH-H2S group. Treatment of LVH with H2S resulted in up-regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways in the kidney. These up regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways enhanced the responsiveness of α1A and α1B-adrenoreceptors subtypes to adrenergic agonists in LVH-H2S. These findings indicate an important role for H2S in modulating deranged signalling in the renal vasculature resulting from LVH development.
    Matched MeSH terms: Receptors, Adrenergic, alpha/metabolism*
  2. Afzal S, Sattar MA, Johns EJ, Abdulla MH, Akhtar S, Hashmi F, et al.
    J Physiol Biochem, 2016 Dec;72(4):593-604.
    PMID: 27405250
    Adiponectin exerts vasodilatory effects. Irbesartan, an angiotensin receptor blocker, possesses partial peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist activity and increases circulating adiponectin. This study explored the effect of irbesartan alone and in combination with adiponectin on blood pressure, renal hemodynamic excretory function, and vasoactive responses to angiotensin II and adrenergic agonists in spontaneously hypertensive rat (SHR). Irbesartan was given orally (30 mg/kg/day) for 28 days and adiponectin intraperitoneally (2.5 μg/kg/day) for last 7 days. Groups of SHR received either irbesartan or adiponectin or in combination. A group of Wistar Kyoto rats (WKY) served as controls. Metabolic data and plasma samples were taken on days 0, 21, and 28. In acute studies, the renal vasoconstrictor actions of angiotensin II (ANGII), noradrenaline (NA), phenylephrine (PE), and methoxamine (ME) were determined. SHR control rats had a higher mean blood pressure than the WKY (132 ± 7 vs. 98 ± 2 mmHg), lower plasma and urinary adiponectin, creatinine clearance, urine flow rate and sodium excretion, and oxidative stress markers compared to WKY (all P alpha adrenoceptors, and ANGII in the renal vasculature of the SHR.
    Matched MeSH terms: Receptors, Adrenergic, alpha/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links