Displaying all 2 publications

Abstract:
Sort:
  1. Aloufi KM, Gameraddin M, Alhazmi FH, Almazroui IS, Osman H, Khandaker MU
    Appl Radiat Isot, 2025 Jan;215:111583.
    PMID: 39522393 DOI: 10.1016/j.apradiso.2024.111583
    BACKGROUND: Nuclear medicine diagnostic and treatment procedures represent significant sources of ionizing radiation exposure for both staff and patients. Consequently, assessing and optimizing radiation doses are crucial to minimize potential side effects.

    AIM: This study seeks to evaluate the effective radiation doses associated with common diagnostic and treatment procedures, as well as propose diagnostic reference levels (DRLs), within two nuclear medicine centers in Madinah, Saudi Arabia.

    METHODOLOGY: Data from 445 patients were gathered from two nuclear medicine centers in the Madinah region of Saudi Arabia. The data were categorized based on the type of nuclear medicine (NM) procedure, the chemical composition of the administered radiopharmaceutical, as well as patient age and weight. Effective radiation doses for prevalent NM procedures were computed, and suggested DRLs were formulated.

    RESULTS: Effective radiation doses were analyzed for 16 adult and 2 pediatric NM procedures (divided into 8 groups). The effective radiation doses for adult diagnostic nuclear medicine procedures range from 0.05 mSv (Nanocoloid) to 29 mSv (67Ga-citrate). For pediatric procedures, the doses range from 0.80 mSv (5-year-old undergoing renal DTPA) to 1.6 mSv (1-year-old undergoing renal DMSA). Furthermore, DRL values were determined for both adult and pediatric NM procedures. The study's findings demonstrated a high degree of concordance between effective radiation doses and DRL values, aligning well with previously published research.

    CONCLUSION: While the effective radiation doses outlined in this study were generally within acceptable limits and consistent with prior research findings, optimizing radiation doses remains imperative, particularly for pediatric NM procedures.

    Matched MeSH terms: Radiopharmaceuticals/analysis
  2. Hassan H, Othman MF, Zakaria ZA, Saad FFA, Abdul Razak HR
    Curr Radiopharm, 2021;14(2):131-144.
    PMID: 33115398 DOI: 10.2174/1874471013999201027215704
    BACKGROUND: Organic solvents play an indispensable role in most of the radiopharmaceutical production stages. It is almost impossible to remove them entirely in the final formulation of the product.

    OBJECTIVE: In this presented work, an analytical method by gas chromatography coupled with flame ionization detection (GC-FID) has been developed to determine organic solvents in radiopharmaceutical samples. The effect of injection holding time, temperature variation in the injection port, and the column temperature on the analysis time and resolution (R ≥ 1.5) of ethanol and acetonitrile was studied extensively.

    METHODS: The experimental conditions were optimized with the aid of further statistical analysis; thence, the proposed method was validated following the International Council for Harmonisation (ICH) Q2 (R1) guideline.

    RESULTS: The proposed analytical method surpassed the acceptance criteria including the linearity > 0.990 (correlation coefficient of R2), precision < 2%, LOD, and LOQ, accuracy > 90% for all solvents. The separation between ethanol and acetonitrile was acceptable with a resolution R > 1.5. Further statistical analysis of Oneway ANOVA revealed that the increment in injection holding time and variation of temperature at the injection port did not significantly affect the analysis time. Nevertheless, the variation in injection port temperature substantially influenced the resolution of ethanol and acetonitrile peaks (p < 0.05).

    CONCLUSION: The proposed analytical method has been successfully implemented to determine the organic solvent in the [18F]fluoro-ethyl-tyrosine ([18F]FET), [18F]fluoromisonidazole ([18F]FMISO), and [18F]fluorothymidine ([18F]FLT).

    Matched MeSH terms: Radiopharmaceuticals/analysis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links