Displaying all 6 publications

Abstract:
Sort:
  1. Hoe CH, Raabe CA, Rozhdestvensky TS, Tang TH
    Int J Med Microbiol, 2013 Jul;303(5):217-29.
    PMID: 23660175 DOI: 10.1016/j.ijmm.2013.04.002
    Bacteria are often exposed to a hostile environment and have developed a plethora of cellular processes in order to survive. A burgeoning list of small non-coding RNAs (sRNAs) has been identified and reported to orchestrate crucial stress responses in bacteria. Among them, cis-encoded sRNA, trans-encoded sRNA, and 5'-untranslated regions (UTRs) of the protein coding sequence are influential in the bacterial response to environmental cues, such as fluctuation of temperature and pH as well as other stress conditions. This review summarizes the role of bacterial sRNAs in modulating selected stress conditions and highlights the alliance between stress response and clustered regularly interspaced short palindromic repeats (CRISPR) in bacterial defense.
    Matched MeSH terms: RNA, Small Untranslated/genetics
  2. Azlan A, Dzaki N, Azzam G
    J Genet Genomics, 2016 08 20;43(8):481-94.
    PMID: 27569398 DOI: 10.1016/j.jgg.2016.06.002
    The discovery of small non-coding RNAs - microRNA (miRNA), short interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) - represents one of the most exciting frontiers in biology specifically on the mechanism of gene regulation. In order to execute their functions, these small RNAs require physical interactions with their protein partners, the Argonaute (AGO) family proteins. Over the years, numerous studies have made tremendous progress on understanding the roles of AGO in gene silencing in various organisms. In this review, we summarize recent progress of AGO-mediated gene silencing and other cellular processes in which AGO proteins have been implicated with a particular focus on progress made in flies, humans and other model organisms as compliment.
    Matched MeSH terms: RNA, Small Untranslated/genetics*
  3. Senthil Kumar R, Srinivasan R, Rawdzah MA, Malini P
    Genomics, 2020 03;112(2):1464-1476.
    PMID: 31450005 DOI: 10.1016/j.ygeno.2019.08.017
    Pieris rapae is a serious pest of brassicas worldwide. We performed de novo assembly of P. rapae transcriptome by next-generation sequencing and assembled approximately 65,727,422 clean paired-end reads into 32,118 unigenes, of which 13,585 were mapped to 255 pathways in the KEGG database. A total of 6173 novel transcripts were identified from reads directly mapped to P. rapae genome. Additionally, 1490 SSRs, 301,377 SNPs, and 29,284 InDels were identified as potential molecular markers to explore polymorphism within P. rapae populations. We screened and mapped 36 transcripts related to OBP, CSP, SNMP, PBAN, and OR. We analyzed the expression profiles of 7 selected genes involved in pheromone transport and degradation by quantitative real-time PCR; these genes are sex-specific and differentially expressed in the developmental stages. Overall, the comprehensive transcriptome resources described in this study could help understand and identify molecular targets particularly reproduction-related genes for developing effective P. rapae management tools.
    Matched MeSH terms: RNA, Small Untranslated/genetics*
  4. Kanniappan P, Ahmed SA, Rajasekaram G, Marimuthu C, Ch'ng ES, Lee LP, et al.
    J Cell Mol Med, 2017 10;21(10):2276-2283.
    PMID: 28756649 DOI: 10.1111/jcmm.13148
    Technological advances in RNA biology greatly improved transcriptome profiling during the last two decades. Besides the discovery of many small RNAs (sRNA) that are involved in the physiological and pathophysiological regulation of various cellular circuits, it becomes evident that the corresponding RNA genes might also serve as potential biomarkers to monitor the progression of disease and treatment. sRNA gene candidate npcTB_6715 was previously identified via experimental RNomic (unpublished data), and we report its application as potential biomarker for the detection of Mycobacterium tuberculosis (MTB) in patient samples. For proof of principle, we developed a multiplex PCR assay and report its validation with 500 clinical cultures, positive for Mycobacteria. The analysis revealed 98.9% sensitivity, 96.1% specificity, positive and negative predictive values of 98.6% and 96.8%, respectively. These results underscore the diagnostic value of the sRNA gene as diagnostic marker for the specific detection of MTB in clinical samples. Its successful application and the general ease of PCR-based detection compared to standard bacterial culture techniques might be the first step towards 'point-of-care' diagnostics of Mycobacteria. To the best of our knowledge, this is the first time for the design of diagnostic applications based on sRNA genes, in Mycobacteria.
    Matched MeSH terms: RNA, Small Untranslated/genetics*
  5. KishanRaj S, Sumitha S, Siventhiran B, Thiviyaa O, Sathasivam KV, Xavier R, et al.
    Mol Biol Rep, 2018 Dec;45(6):2333-2343.
    PMID: 30284142 DOI: 10.1007/s11033-018-4397-z
    Proteus mirabilis, a gram-negative bacterium of the family Enterobacteriaceae, is a leading cause of urinary tract infection (UTI) with rapid development of multi-drug resistance. Identification of small regulatory RNAs (sRNAs), which belongs to a class of RNAs that do not translate into a protein, could permit the comprehension of the regulatory roles this molecules play in mediating pathogenesis and multi-drug resistance of the organism. In this study, comparative sRNA analysis across three different members of Enterobacteriaceae (Escherichia coli, Salmonella typhi and Salmonella typhimurium) was carried out to identify the sRNA homologs in P. mirabilis. A total of 232 sRNA genes that were reported in E. coli, S. typhi and S. typhimurium were subjected to comparative analysis against P. mirabilis HI4320 genome. We report the detection of 14 sRNA candidates, conserved in the orthologous regions of P. mirabilis, that are not included in Rfam database. Northern-blot analysis was carried out for selected three sRNA candidates from the current investigation and three known sRNA from Rfam of P. mirabilis. The expression pattern of the six sRNA candidates shows that they are growth stage-dependant. To the best of our knowledge, this is the first report on the identification of sRNA candidates in P. mirabilis.
    Matched MeSH terms: RNA, Small Untranslated/genetics*
  6. Suvorov A, Pilsner JR, Naumov V, Shtratnikova V, Zheludkevich A, Gerasimov E, et al.
    Int J Mol Sci, 2020 Nov 04;21(21).
    PMID: 33158036 DOI: 10.3390/ijms21218252
    Advanced paternal age at fertilization is a risk factor for multiple disorders in offspring and may be linked to age-related epigenetic changes in the father's sperm. An understanding of aging-related epigenetic changes in sperm and environmental factors that modify such changes is needed. Here, we characterize changes in sperm small non-coding RNA (sncRNA) between young pubertal and mature rats. We also analyze the modification of these changes by exposure to environmental xenobiotic 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). sncRNA libraries prepared from epididymal spermatozoa were sequenced and analyzed using DESeq 2. The distribution of small RNA fractions changed with age, with fractions mapping to rRNA and lncRNA decreasing and fractions mapping to tRNA and miRNA increasing. In total, 249 miRNA, 908 piRNA and 227 tRNA-derived RNA were differentially expressed (twofold change, false discovery rate (FDR) p ≤ 0.05) between age groups in control animals. Differentially expressed miRNA and piRNA were enriched for protein-coding targets involved in development and metabolism, while piRNA were enriched for long terminal repeat (LTR) targets. BDE-47 accelerated age-dependent changes in sncRNA in younger animals, decelerated these changes in older animals and increased the variance in expression of all sncRNA. Our results indicate that the natural aging process has profound effects on sperm sncRNA profiles and this effect may be modified by environmental exposure.
    Matched MeSH terms: RNA, Small Untranslated/genetics*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links