Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Huang LM, Schibler A, Huang YC, Tai A, Chi H, Chieng CH, et al.
    Influenza Other Respir Viruses, 2023 Jul;17(7):e13176.
    PMID: 37502622 DOI: 10.1111/irv.13176
    BACKGROUND: Respiratory syncytial virus (RSV) infection is a cause of substantial morbidity and mortality in young children. There is currently no effective therapy available.

    METHODS: This was a Phase 2 study of the oral RSV fusion protein inhibitor AK0529 in infants aged 1-24 months, hospitalized with RSV infection. In Part 1, patients (n = 24) were randomized 2:1 to receive a single dose of AK0529 up to 4 mg/kg or placebo. In Part 2, patients (n = 48) were randomized 2:1 to receive AK0529 at 0.5, 1, or 2 mg/kg bid or placebo for 5 days. Sparse pharmacokinetic samples were assessed using population pharmacokinetics modelling. Safety, tolerability, viral load, and respiratory signs and symptoms were assessed daily during treatment.

    RESULTS: No safety or tolerability signals were detected for AK0529: grade ≥3 treatment-emergent adverse events occurring in 4.1% of patients in AK0529 and 4.2% in placebo groups, respectively, and none led to death or withdrawal from the study. In Part 2, targeted drug exposure was reached with 2 mg/kg bid. A numerically greater reduction in median viral load with 2 mg/kg bid AK0529 than with placebo at 96 h was observed. A -4.0 (95% CI: -4.51, -2.03) median reduction in Wang Respiratory Score from baseline to 96 h was observed in the 2 mg/kg group compared with -2.0 (95% CI: -3.42, -1.82) in the placebo group.

    CONCLUSIONS: AK0529 was well tolerated in hospitalized RSV-infected infant patients. Treatment with AK0529 2 mg/kg bid was observed to reduce viral load and Wang Respiratory Score.

    CLINICAL TRIALS REGISTRATION: NCT02654171.

    Matched MeSH terms: Quinazolines/pharmacology; Quinazolines/therapeutic use
  2. Adam F, Arafath MA, Rosenani AH, Razali MR
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o971-2.
    PMID: 26870556 DOI: 10.1107/S2056989015021180
    In the mol-ecule of the title compound, C21H17N3O2, the 5,6-di-hydro-benzimidazo[1,2-c]quinazoline moiety is disordered over two orientations about a pseudo-mirror plane, with a refined occupancy ratio of 0.863 (2):0.137 (2). The dihedral angles formed by the benzimidazole ring system and the benzene ring of the quinazoline group are 14.28 (5) and 4.7 (3)° for the major and minor disorder components, respectively. An intra-molecular O-H⋯O hydrogen bond is present. In the crystal, mol-ecules are linked by O-H⋯N hydrogen bonds, forming chains running parallel to [10-1].
    Matched MeSH terms: Quinazolines
  3. Segasothy M
    Med J Malaysia, 1982 Dec;37(4):384.
    PMID: 7167095
    Matched MeSH terms: Quinazolines/adverse effects*
  4. Soo RA, Cho BC, Kim JH, Ahn MJ, Lee KH, Zimina A, et al.
    J Thorac Oncol, 2023 Dec;18(12):1756-1766.
    PMID: 37865896 DOI: 10.1016/j.jtho.2023.08.017
    INTRODUCTION: Lazertinib, a third-generation mutant-selective EGFR tyrosine kinase inhibitor, improved progression-free survival compared with gefitinib in the phase 3 LASER301 study (ClinicalTrials.gov Identifier: NCT04248829). Here, we report the efficacy of lazertinib and gefitinib in patients with baseline central nervous system (CNS) metastases.

    METHODS: Treatment-naive patients with EGFR-mutated advanced NSCLC were randomized one-to-one to lazertinib (240 mg/d) or gefitinib (250 mg/d). Patients with asymptomatic or stable CNS metastases were included if any planned radiation, surgery, or steroids were completed more than 2 weeks before randomization. For patients with CNS metastases confirmed at screening or subsequently suspected, CNS imaging was performed every 6 weeks for 18 months, then every 12 weeks. End points assessed by blinded independent central review and Response Evaluation Criteria in Solid Tumors version 1.1 included intracranial progression-free survival, intracranial objective response rate, and intracranial duration of response.

    RESULTS: Of the 393 patients enrolled in LASER301, 86 (lazertinib, n = 45; gefitinib, n = 41) had measurable and or non-measurable baseline CNS metastases. The median intracranial progression-free survival in the lazertinib group was 28.2 months (95% confidence interval [CI]: 14.8-28.2) versus 8.4 months (95% CI: 6.7-not reached [NR]) in the gefitinib group (hazard ratio = 0.42, 95% CI: 0.20-0.89, p = 0.02). Among patients with measurable CNS lesions, the intracranial objective response rate was numerically higher with lazertinib (94%; n = 17) versus gefitinib (73%; n = 11, p = 0.124). The median intracranial duration of response with lazertinib was NR (8.3-NR) versus 6.3 months (2.8-NR) with gefitinib. Tolerability was similar to the overall LASER301 population.

    CONCLUSIONS: In patients with CNS metastases, lazertinib significantly improved intracranial progression-free survival compared with gefitinib, with more durable responses.

    Matched MeSH terms: Quinazolines/pharmacology
  5. Bagheri E, Saremi K, Hajiaghaalipour F, Faraj FL, Ali HM, Abdulla MA, et al.
    Curr Pharm Des, 2018;24(13):1395-1404.
    PMID: 29384057 DOI: 10.2174/1381612824666180130124308
    Quinazoline is an aromatic bicyclic compound exhibiting several pharmaceutical and biological activities. This study was conducted to investigate the potential wound healing properties of Synthetic Quinazoline Compound (SQC) on experimental rats. The toxicity of SQC was determined by MTT cell proliferation assay. The healing effect of SQC was assessed by in vitro wound healing scratch assay on the skin fibroblast cells (BJ-5ta) and in vivo wound healing experiment of low and high dose of SQC on adult Sprague-Dawley rats compared with negative (gum acacia) and positive control (Intrasite-gel). Hematoxylin and Eosin (H&E), Masson's Trichrome (MT) staining and immunohistochemistry analysis were performed to evaluate the histopathological alterations and proteins expression of Bax and Hsp70 on the wound tissue after 10 days. In addition, levels of antioxidant enzymes (catalase, glutathione peroxidase and superoxide dismutase), and malondialdehyde (MDA) were measured in wound tissue homogenates. The SQC significantly enhanced BJ-5ta cell proliferation and accelerated the percentage of wound closure, with less scarring, increased fibroblast and collagen fibers and less inflammatory cells compared with the negative control. The compound also increases endogenous enzymes and decline lipid peroxidation in wound homogenate.
    Matched MeSH terms: Quinazolines/chemical synthesis*; Quinazolines/pharmacology*
  6. Kabir MZ, Mukarram AK, Mohamad SB, Alias Z, Tayyab S
    J. Photochem. Photobiol. B, Biol., 2016 Jul;160:229-39.
    PMID: 27128364 DOI: 10.1016/j.jphotobiol.2016.04.005
    Interaction of a promising anticancer drug, lapatinib (LAP) with the major transport protein in human blood circulation, human serum albumin (HSA) was investigated using fluorescence and circular dichroism (CD) spectroscopy as well as molecular docking analysis. LAP-HSA complex formation was evident from the involvement of static quenching mechanism, as revealed by the fluorescence quenching data analysis. The binding constant, Ka value in the range of 1.49-1.01×10(5)M(-1), obtained at three different temperatures was suggestive of the intermediate binding affinity between LAP and HSA. Thermodynamic analysis of the binding data (∆H=-9.75kJmol(-1) and ∆S=+65.21Jmol(-1)K(-1)) suggested involvement of both hydrophobic interactions and hydrogen bonding in LAP-HSA interaction, which were in line with the molecular docking results. LAP binding to HSA led to the secondary and the tertiary structural alterations in the protein as evident from the far-UV and the near-UV CD spectral analysis, respectively. Microenvironmental perturbation around Trp and Tyr residues in HSA upon LAP binding was confirmed from the three-dimensional fluorescence spectral results. LAP binding to HSA improved the thermal stability of the protein. LAP was found to bind preferentially to the site III in subdomain IB on HSA, as probed by the competitive drug displacement results and supported by the molecular docking results. The effect of metal ions on the binding constant between LAP and HSA was also investigated and the results showed a decrease in the binding constant in the presence of these metal ions.
    Matched MeSH terms: Quinazolines/metabolism*; Quinazolines/chemistry
  7. Kabir MZ, Hamzah NAB, Ghani H, Mohamad SB, Alias Z, Tayyab S
    Spectrochim Acta A Mol Biomol Spectrosc, 2018 Jan 15;189:485-494.
    PMID: 28843881 DOI: 10.1016/j.saa.2017.08.051
    Interaction of an anticancer drug, vandetanib (VDB) with a ligand transporter, lysozyme (LYZ) was explored using multispectroscopic techniques, such as fluorescence, absorption and circular dichroism along with computational analysis. Fluorescence data and absorption results confirmed VDB-LYZ complexation. VDB-induced quenching was characterized as static quenching based on inverse correlation of KSV with temperature as well as kq values. The complex was characterized by the weak binding constant (Ka=4.96-3.14×103M-1). Thermodynamic data (ΔS=+12.82Jmol-1K-1; ΔH=-16.73kJmol-1) of VDB-LYZ interaction revealed participation of hydrophobic and van der Waals forces along with hydrogen bonds in VDB-LYZ complexation. Microenvironmental perturbations around tryptophan and tyrosine residues as well as secondary and tertiary structural alterations in LYZ upon addition of VDB were evident from the 3-D fluorescence, far- and near-UV CD spectral analyses, respectively. Interestingly, addition of VDB to LYZ significantly increased protein's thermostability. Molecular docking results suggested the location of VDB binding site near the LYZ active site while molecular dynamics simulation results suggested stability of VDB-LYZ complex. Presence of Mg2+, Ba2+ and Zn2+ was found to interfere with VDB-LYZ interaction.
    Matched MeSH terms: Quinazolines/metabolism*; Quinazolines/chemistry*
  8. Agbo EN, Makhafola TJ, Choong YS, Mphahlele MJ, Ramasami P
    Molecules, 2015 Dec 25;21(1):E28.
    PMID: 26712730 DOI: 10.3390/molecules21010028
    Suzuki-Miyaura cross-coupling of 6-bromo-2-styrylquinazolin-4(3H)-ones with arylboronic acids afforded a series of novel 6-aryl-2-styrylquinazolin-4(3H)-ones. These compounds were evaluated for potential anticancer properties against the human renal (TK-10), melanoma (UACC-62) and breast cancer (MCF-7) cell lines. Their antimicrobial properties were also evaluated against six Gram-positive and four Gram-negative bacteria, as well as two strains of fungi. Molecular docking studies (in silico) were conducted on compounds 5a, b, d and 6a, b, d-f to recognize the hypothetical binding motif of the title compounds within the active site of the dihydrofolate reductase and thymidylate synthase enzymes.
    Matched MeSH terms: Quinazolines/chemical synthesis*; Quinazolines/pharmacology*; Quinazolines/chemistry
  9. Kabir MZ, Feroz SR, Mukarram AK, Alias Z, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2016 Aug;34(8):1693-704.
    PMID: 26331959 DOI: 10.1080/07391102.2015.1089187
    Interaction of a tyrosine kinase inhibitor, vandetanib (VDB), with the major transport protein in the human blood circulation, human serum albumin (HSA), was investigated using fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking analysis. The binding constant of the VDB-HSA system, as determined by fluorescence quenching titration method was found in the range, 8.92-6.89 × 10(3 )M(-1) at three different temperatures, suggesting moderate binding affinity. Furthermore, decrease in the binding constant with increasing temperature revealed involvement of static quenching mechanism, thus affirming the formation of the VDB-HSA complex. Thermodynamic analysis of the binding reaction between VDB and HSA yielded positive ΔS (52.76 J mol(-1) K(-1)) and negative ΔH (-6.57 kJ mol(-1)) values, which suggested involvement of hydrophobic interactions and hydrogen bonding in stabilizing the VDB-HSA complex. Far-UV and near-UV CD spectral results suggested alterations in both secondary and tertiary structures of HSA upon VDB-binding. Three-dimensional fluorescence spectral results also showed significant microenvironmental changes around the Trp residue of HSA consequent to the complex formation. Use of site-specific marker ligands, such as phenylbutazone (site I marker) and diazepam (site II marker) in competitive ligand displacement experiments indicated location of the VDB binding site on HSA as Sudlow's site I (subdomain IIA), which was further established by molecular docking results. Presence of some common metal ions, such as Ca(2+), Zn(2+), Cu(2+), Ba(2+), Mg(2+), and Mn(2+) in the reaction mixture produced smaller but significant alterations in the binding affinity of VDB to HSA.
    Matched MeSH terms: Quinazolines/metabolism; Quinazolines/pharmacology; Quinazolines/chemistry*
  10. Abuelizz HA, Anouar EH, Ahmad R, Azman NIIN, Marzouk M, Al-Salahi R
    PLoS One, 2019;14(8):e0220379.
    PMID: 31412050 DOI: 10.1371/journal.pone.0220379
    Previously, we synthesized triazoloquinazolines 1-14 and characterized their structure. In this study, we aimed to evaluate the in vitro activity of the targets 1-14 as α-glucosidase inhibitors using α-glucosidase enzyme from Saccharomyces cerevisiae type 1. Among the tested compounds, triazoloquinazolines 14, 8, 4, 5, and 3 showed the highest inhibitory activity (IC50 = 12.70 ± 1.87, 28.54 ± 1.22, 45.65 ± 4.28, 72.28 ± 4.67, and 83.87 ± 5.12 μM, respectively) in relation to that of acarbose (IC50 = 143.54 ± 2.08 μM) as a reference drug. Triazoloquinazolines were identified herein as a new class of potent α-glucosidase inhibitors. Molecular docking results envisaged the plausible binding interaction between the target triazoloquinazolines and α-glucosidase enzyme and indicated considerable interaction with the active site residues.
    Matched MeSH terms: Quinazolines
  11. Nallathamby N, Phan CW, Sova M, Saso L, Sabaratnam V
    Med Chem, 2021;17(6):623-629.
    PMID: 31849289 DOI: 10.2174/1573406416666191218095635
    BACKGROUND: Microglia are associated with neuroinflammation, which play a key role in the pathogenesis of neurodegenerative diseases. It has been reported that some quinazolines and quinazolinones possess anti-inflammatory properties. However, the pharmacological properties of certain quinazoline derivatives are still unknown.

    OBJECTIVE: The antioxidant, cytotoxic, and protective effects of a series of synthesized 2- trifluoromethylquinazolines (2, 4, and 5) and quinazolinones (6-8) in lipopolysaccharide (LPS)- murine microglia (BV2) and hydrogen peroxide (H2O2)-mouse neuroblastoma-2a (N2a) cells were investigated.

    METHOD: The antioxidant activity of synthesized compounds was evaluated with ABTS and DPPH assays. The cytotoxic activities were determined by MTS assay in BV2 and N2a cells. The production of nitric oxide (NO) in LPS-induced BV2 microglia cells was quantified.

    RESULTS: The highest ABTS and DPPH scavenging activities were observed for compound 8 with 87.7% of ABTS scavenge percentage and 54.2% DPPH inhibition. All compounds were noncytotoxic in BV2 and N2a cells at 5 and 50 μg/mL. The compounds which showed the highest protective effects in LPS-induced BV2 and H2O2-induced N2a cells were 5 and 7. All tested compounds, except 4, also reduced NO production at concentrations of 50 μg/mL. The quinazolinone series 6-8 exhibited the highest percentage of NO reduction, ranging from 38 to 60%. Compounds 5 and 8 possess balanced antioxidant and protective properties against LPS- and H2O2-induced cell death, thus showing great potential to be developed into anti-inflammatory and neuroprotective agents.

    CONCLUSION: Compounds 5 and 7 were able to protect the BV2 and N2a cells against LPS and H2O2 toxicity, respectively, at a low concentration (5 μg/mL). Compounds 6-8 showed potent reduction of NO production in BV2 cells.

    Matched MeSH terms: Quinazolines/chemical synthesis*; Quinazolines/pharmacology*; Quinazolines/chemistry
  12. Ong CK, Tan WC, Chan LC, Abdul Razak M
    Med J Malaysia, 2012 Apr;67(2):222-3.
    PMID: 22822651 MyJurnal
    Epidermal growth factor receptor (EGFR)--tyrosine kinase inhibitors (TKI) like erlotinib and gefitinib have been approved as monotherapy for the treatment of patients with locally advanced or metastatic non small cell lung cancer (NSCLC) after failure of at least one prior chemotherapy regimen. The use of EGFR-TKI is associated with unique and dramatic dermatologic side effects. We report 2 patients with NSCLC developing a typical acneiform (papulo-pustular) eruption shortly after initiation of EGFR-TKI.
    Matched MeSH terms: Quinazolines/adverse effects*
  13. Nair A, Gupta R, Vasanti S
    Pharm Dev Technol, 2007;12(6):621-5.
    PMID: 18161635
    The present study is an attempt to formulate a controlled-release matrix tablet formulation for alfuzosin hydrochloride by using low viscous hydroxy propyl methyl cellulose (HPMC K-100 and HPMC 15cps) and its comparison with marketed product. Different batches of tablets containing 10 mg of alfuzosin were prepared by direct compression technique and evaluated for their physical properties, drug content, and in vitro drug release. All the formulations had a good physical integrity, and the drug content between the batches did not vary by more than 1%. Drug release from the matrix tablets was carried out for 12 hr and showed that the release rate was not highly significant with different ratios of HPMC K-100 and HPMC15cps. Similar dissolution profiles were observed between formulation F3 and the marketed product throughout the study period. The calculated regression coefficients showed a higher r2 value with zero-order kinetics and Higuchi model in all the cases. Although both the models could be applicable, zero-order kinetics seems to be better. Hence, it can be concluded that the use of low viscous hydrophilic polymer of different grades (HPMC K-100 and HPMC 15cps) can control the alfuzosin release for a period of 12 hr and was comparable to the marketed product.
    Matched MeSH terms: Quinazolines/chemistry*
  14. Raja Sharin RNFS, Khan J, Ibahim MJ, Muhamad M, Bowen J, Wan Mohamad Zain WNI
    Biomed Res Int, 2022;2022:4165808.
    PMID: 35800225 DOI: 10.1155/2022/4165808
    Lapatinib, an orally administered small-molecule tyrosine kinase inhibitor (SM-TKI), is an effective treatment for ErbB2-positive breast cancer. However, its efficacy as one of the targeted cancer therapies has been hampered by several adverse effects, especially gastrointestinal toxicity, commonly manifested as diarrhoea. Although it can be generally tolerated, diarrhoea is reported as the most common and most impactful on a patient's quality of life and associated with treatment interruption. Severe diarrhoea can result in malabsorption, leading to dehydration, fatigue, and even death. ErbB1 is an epidermal growth factor profoundly expressed in normal gut epithelium while lapatinib is a dual ErbB1/ErbB2 tyrosine kinase inhibitor. Thus, ErbB1 inhibition by lapatinib may affect gut homeostasis leading to diarrhoea. Nevertheless, the underlying mechanisms remain unclear. This review article provides evidence of the possible mechanisms of lapatinib-induced diarrhoea that may be related to/or modulated by ErbB1. Insight regarding the involvement of ErbB1 in the pathophysiological changes such as inflammation and intestinal permeability as the underlying cause of diarrhoea is covered in this article.
    Matched MeSH terms: Quinazolines/pharmacology
  15. Faraj FL, Zahedifard M, Paydar M, Looi CY, Abdul Majid N, Ali HM, et al.
    ScientificWorldJournal, 2014;2014:212096.
    PMID: 25548779 DOI: 10.1155/2014/212096
    Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.
    Matched MeSH terms: Quinazolines/chemical synthesis*; Quinazolines/pharmacology*; Quinazolines/toxicity; Quinazolines/chemistry
  16. Liam CK, Pang YK, Leow CH
    Respirology, 2006 May;11(3):287-91.
    PMID: 16635086
    To describe the efficacy of monotherapy with the epidermal growth factor receptor-tyrosine kinase inhibitor, gefitinib in patients with locally advanced and metastatic primary lung adenocarcinoma.
    Matched MeSH terms: Quinazolines/administration & dosage; Quinazolines/therapeutic use*
  17. Hong W, Wang Y, Chang Z, Yang Y, Pu J, Sun T, et al.
    Sci Rep, 2015;5:15328.
    PMID: 26471125 DOI: 10.1038/srep15328
    It is an urgent need to develop new drugs for Mycobacterium tuberculosis (Mtb), and the enzyme, dihydrofolate reductase (DHFR) is a recognised drug target. The crystal structures of methotrexate binding to mt- and h-DHFR separately indicate that the glycerol (GOL) binding site is likely to be critical for the function of mt-DHFR selective inhibitors. We have used in silico methods to screen NCI small molecule database and a group of related compounds were obtained that inhibit mt-DHFR activity and showed bactericidal effects against a test Mtb strain. The binding poses were then analysed and the influence of GOL binding site was studied by using molecular modelling. By comparing the chemical structures, 4 compounds that might be able to occupy the GOL binding site were identified. However, these compounds contain large hydrophobic side chains. As the GOL binding site is more hydrophilic, molecular modelling indicated that these compounds were failed to occupy the GOL site. The most potent inhibitor (compound 6) demonstrated limited selectivity for mt-DHFR, but did contain a novel central core (7H-pyrrolo[3,2-f]quinazoline-1,3-diamine), which may significantly expand the chemical space of novel mt-DHFR inhibitors. Collectively, these observations will inform future medicinal chemistry efforts to improve the selectivity of compounds against mt-DHFR.
    Matched MeSH terms: Quinazolines
  18. Lee HM, Kelly GM, Zainal NS, Yee PS, Fadlullah MZH, Lee BKB, et al.
    Sci Rep, 2019 02 20;9(1):2357.
    PMID: 30787334 DOI: 10.1038/s41598-019-38742-0
    The use of EGFR inhibitors on oral squamous cell carcinoma (OSCC) as monotherapy yielded modest clinical outcomes and therefore would benefit from biomarkers that could predict which patient subsets are likely to respond. Here, we determined the efficacy of erlotinib in OSCC cell lines, and by comparing sensitive and resistant lines to identify potential biomarkers. We focused on the 4717C > G polymorphism in periplakin (PPL) where the CC genotype was associated with erlotinib resistance. To validate this, erlotinib-resistant cell lines harbouring CC genotype were engineered to overexpress the GG genotype and vice versa. Isogenic cell lines were then studied for their response to erlotinib treatment. We demonstrated that overexpression of the GG genotype in erlotinib-resistant lines sensitized them to erlotinib and inhibition of AKT phosphorylation. Similarly, the expression of the CC genotype conferred resistance to erlotinib with a concomitant increase in AKT phosphorylation. We also demonstrated that cell lines with the CC genotype generally are more resistant to other EGFR inhibitors than those with the GG genotype. Overall, we showed that a specific polymorphism in the PPL gene could confer resistance to erlotinib and other EGFR inhibitors and further work to evaluate these as biomarkers of response is warranted.
    Matched MeSH terms: Quinazolines
  19. Tayyab S, Magesvaran MKA, Kabir MZ, Ridzwan NFW, Mohamad SB
    J Biomol Struct Dyn, 2021 Jul;39(10):3565-3575.
    PMID: 32397949 DOI: 10.1080/07391102.2020.1766571
    Interaction behaviour of an anticancer drug, saracatinib (SCB) with human serum albumin (HSA), the major carrier protein in human blood circulation was investigated using fluorescence and absorption spectroscopy as well as computational methods. Analysis of the fluorescence quenching data along with absorption results confirmed the complex formation between SCB and HSA, based on the inverse correlation of the Stern-Volmer constant (KSV) with temperature and hyperchromic effect in the absorption spectra. Moderate binding affinity between SCB and HSA was evident from the binding constant, Ka value (1.08-0.74 × 104 M-1), while the SCB-HSA complexation was anticipated to be stabilized by hydrophobic and van der Waals interactions along with hydrogen bonds, as revealed from the thermodynamic data (ΔS = + 29.40 J mol-1 K-1 and ΔH = - 13.90 kJ mol-1). Addition of SCB to HSA significantly defended the thermal denaturation of the protein, though it perturbed the surrounding medium around Tyr and Trp residues. Site marker displacement results elucidated Sudlow's site I, positioned in subdomain IIA of HSA as the preferred binding site of SCB, which was well supported by molecular docking. Molecular dynamics simulation results suggested the stability of the SCB-HSA complex.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Quinazolines
  20. Mphahlele MJ, Paumo HK, Choong YS
    Pharmaceuticals (Basel), 2017 Nov 20;10(4).
    PMID: 29156606 DOI: 10.3390/ph10040087
    Series of the 2-unsubstituted and 2-(4-chlorophenyl)-substituted 4-anilino-6-bromoquinazolines and their 6-(4-fluorophenyl)-substituted derivatives were evaluated for in vitro cytotoxicity against MCF-7 and HeLa cells. The 2-unsubstituted 4-anilino-6-bromoquinazolines lacked activity, whereas most of their 2-(4-chlorophenyl) substituted derivatives were found to exhibit significant cytotoxicity and selectivity against HeLa cells. Replacement of bromine with 4-fluorophenyl group for the 2-unsubstituted 4-anilinoquinazolines resulted in superior activity against HeLa cells compared to Gefitinib. The presence of a 4-fluorophenyl group in the 2-(4-chlorophenyl) substituted derivatives led to increased cytotoxicity against HeLa cells, except for the 3-chloroanilino derivative. The most active compounds, namely, 3g, 3l, and 4l, were found to exhibit a moderate to significant inhibitory effect against epidermal growth factor receptor tyrosine kinase (EGFR-TK). The EGFR molecular docking model suggested that these compounds are nicely bound to the region of EGFR.
    Matched MeSH terms: Quinazolines
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links